The Niemann-Pick C1 and caveolin-1 proteins interact to modulate efflux of low density lipoprotein-derived cholesterol from late endocytic compartments.
David Jelinek, Randy A Heidenreich, Robert A Orlando, William S Garver
{"title":"The Niemann-Pick C1 and caveolin-1 proteins interact to modulate efflux of low density lipoprotein-derived cholesterol from late endocytic compartments.","authors":"David Jelinek, Randy A Heidenreich, Robert A Orlando, William S Garver","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Niemann-Pick C1 (NPC1) protein has a central role in regulating the efflux of lipoprotein-derived cholesterol from late endosomes/lysosomes and transport to other cellular compartments. Since the NPC1 protein has been shown to regulate the transport of cholesterol to cellular compartments enriched with the ubiquitous cholesterol-binding and transport protein caveolin-1, the present study was performed to determine whether the NPC1 and caveolin-1 proteins interact and function to modulate efflux of low density lipoprotein (LDL)-derived cholesterol from endocytic compartments. To perform these studies, normal human fibroblasts were grown in media with lipoprotein-deficient serum (LPDS) or media with LPDS supplemented with purified human LDL. The results indicated reciprocal co-immunoprecipitation and partial co-localization of the NPC1 and caveolin-1 proteins that was decreased when fibroblasts were grown in media with LDL. Consistent with interaction of the NPC1 and caveolin-1 proteins, a highly conserved caveolin-binding motif was identified within a cytoplasmic loop located adjacent to the sterol-sensing domain (SSD) of the NPC1 protein. To examine the functional relevance of this interaction, fibroblasts were transfected with caveolin-1 siRNA and found to accumulate increased amounts of LDL-derived cholesterol within late endosomes/ lysosomes. Together, this report presents novel results demonstrating that the NPC1 and caveolin-1 proteins interact to modulate efflux of LDL-derived cholesterol from late endocytic compartments.</p>","PeriodicalId":73836,"journal":{"name":"Journal of molecular biochemistry","volume":"3 1","pages":"14-26"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181540/pdf/nihms572403.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular biochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Niemann-Pick C1 (NPC1) protein has a central role in regulating the efflux of lipoprotein-derived cholesterol from late endosomes/lysosomes and transport to other cellular compartments. Since the NPC1 protein has been shown to regulate the transport of cholesterol to cellular compartments enriched with the ubiquitous cholesterol-binding and transport protein caveolin-1, the present study was performed to determine whether the NPC1 and caveolin-1 proteins interact and function to modulate efflux of low density lipoprotein (LDL)-derived cholesterol from endocytic compartments. To perform these studies, normal human fibroblasts were grown in media with lipoprotein-deficient serum (LPDS) or media with LPDS supplemented with purified human LDL. The results indicated reciprocal co-immunoprecipitation and partial co-localization of the NPC1 and caveolin-1 proteins that was decreased when fibroblasts were grown in media with LDL. Consistent with interaction of the NPC1 and caveolin-1 proteins, a highly conserved caveolin-binding motif was identified within a cytoplasmic loop located adjacent to the sterol-sensing domain (SSD) of the NPC1 protein. To examine the functional relevance of this interaction, fibroblasts were transfected with caveolin-1 siRNA and found to accumulate increased amounts of LDL-derived cholesterol within late endosomes/ lysosomes. Together, this report presents novel results demonstrating that the NPC1 and caveolin-1 proteins interact to modulate efflux of LDL-derived cholesterol from late endocytic compartments.