Shuaidong Li , Lize Meng , Chu Zhao , Yu Gu , Robert G.M. Spencer , Xosé Antón Álvarez–Salgado , Anne M. Kellerman , Amy M. McKenna , Tao Huang , Hao Yang , Changchun Huang
{"title":"Spatiotemporal response of dissolved organic matter diversity to natural and anthropogenic forces along the whole mainstream of the Yangtze River","authors":"Shuaidong Li , Lize Meng , Chu Zhao , Yu Gu , Robert G.M. Spencer , Xosé Antón Álvarez–Salgado , Anne M. Kellerman , Amy M. McKenna , Tao Huang , Hao Yang , Changchun Huang","doi":"10.1016/j.watres.2023.119812","DOIUrl":null,"url":null,"abstract":"<div><p>The Yangtze River, the largest river in Asia, plays a crucial role in linking continental and oceanic ecosystems. However, the impact of natural and anthropogenic disturbances on composition and transformation of dissolved organic matter (DOM) during long-distance transport and seasonal cycle is not fully understood. By using a combination of elemental, isotopic and optical techniques, as well as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we investigated DOM abundance and composition along the whole mainstream at highly spatial resolution in the dry and early wet seasons. Our findings showed that the concentration and flux of dissolved organic carbon (DOC) in the Yangtze River was much lower compared with other worldwide larger rivers. The distribution of <em>δ</em><sup>13</sup>C<sub>DOC</sub> and higher abundance of humic-like fluorescent component and highly unsaturated and phenolics (HUPs) compound reflected a prominent contribution of allochthonous DOM. Further optical and molecular analysis revealed humic-like fluorescent components were coupled with CHO molecules and HUPs compound with higher aromatic, unsaturated, molecular weight and stable characteristics between upstream and midstream reaches. With increasing agricultural and urban land downstream, there were more heteroatomic formulae and labile aliphatic and protein-like compounds which were derived from human activities and in situ primary production. Meanwhile, DOM gradually accumulates with slow water flow and additional autochthonous organics. Weaker solar radiation and water dilution during the dry/cold season favours highly aromatic, unsaturated and oxygenated DOM compositions. Conversely, higher discharge during the wet/warm season diluted the terrestrial DOM, but warm temperatures could promote phytoplankton growth that releases labile aliphatic and protein-like DOM. Besides, chemical sulfurization, hydrogenation and oxygenation were found during molecular cycling processes. Our research emphasizes the active response of riverine DOM to natural and anthropogenic controls, and provides a valuable preliminary background to better understand the biogeochemical cycling of DOM in a larger river.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135423002476","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 4
Abstract
The Yangtze River, the largest river in Asia, plays a crucial role in linking continental and oceanic ecosystems. However, the impact of natural and anthropogenic disturbances on composition and transformation of dissolved organic matter (DOM) during long-distance transport and seasonal cycle is not fully understood. By using a combination of elemental, isotopic and optical techniques, as well as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we investigated DOM abundance and composition along the whole mainstream at highly spatial resolution in the dry and early wet seasons. Our findings showed that the concentration and flux of dissolved organic carbon (DOC) in the Yangtze River was much lower compared with other worldwide larger rivers. The distribution of δ13CDOC and higher abundance of humic-like fluorescent component and highly unsaturated and phenolics (HUPs) compound reflected a prominent contribution of allochthonous DOM. Further optical and molecular analysis revealed humic-like fluorescent components were coupled with CHO molecules and HUPs compound with higher aromatic, unsaturated, molecular weight and stable characteristics between upstream and midstream reaches. With increasing agricultural and urban land downstream, there were more heteroatomic formulae and labile aliphatic and protein-like compounds which were derived from human activities and in situ primary production. Meanwhile, DOM gradually accumulates with slow water flow and additional autochthonous organics. Weaker solar radiation and water dilution during the dry/cold season favours highly aromatic, unsaturated and oxygenated DOM compositions. Conversely, higher discharge during the wet/warm season diluted the terrestrial DOM, but warm temperatures could promote phytoplankton growth that releases labile aliphatic and protein-like DOM. Besides, chemical sulfurization, hydrogenation and oxygenation were found during molecular cycling processes. Our research emphasizes the active response of riverine DOM to natural and anthropogenic controls, and provides a valuable preliminary background to better understand the biogeochemical cycling of DOM in a larger river.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.