{"title":"Histocompatible parthenogenetic embryonic stem cells as a potential source for regenerative medicine.","authors":"Akiko Yabuuchi, Haniya Rehman, Kitai Kim","doi":"10.1274/jmor.29.17","DOIUrl":null,"url":null,"abstract":"<p><p>Parthenogenesis is the process by which an oocyte develops into an embryo without fertilization. Parthenogenetic activation can be performed at various stages of meiosis, yielding embryos with a distinct genetic pattern of homozygousity and heterozygousity. The heterozygousity pattern specific to parthenogenetic embryonic stem (pES) cells derived from such embryos, can be predicted using genome-wide single nucleotide polymorphism (SNP) analysis to determine whether extrusion of the first or second polar body is prohibited. The heterozygous pES cells carrying the full complement of major histocompatibility complex (MHC) antigen matched to the oocyte donor, could therefore provide a potential source of MHC matched cells or tissue for cell replacement therapy. In this review, we summarized the mechanism of deriving heterozygous MHC-matched pES cells using a mouse and human models.</p>","PeriodicalId":90599,"journal":{"name":"Journal of mammalian ova research","volume":"29 1","pages":"17-21"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1274/jmor.29.17","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mammalian ova research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1274/jmor.29.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Parthenogenesis is the process by which an oocyte develops into an embryo without fertilization. Parthenogenetic activation can be performed at various stages of meiosis, yielding embryos with a distinct genetic pattern of homozygousity and heterozygousity. The heterozygousity pattern specific to parthenogenetic embryonic stem (pES) cells derived from such embryos, can be predicted using genome-wide single nucleotide polymorphism (SNP) analysis to determine whether extrusion of the first or second polar body is prohibited. The heterozygous pES cells carrying the full complement of major histocompatibility complex (MHC) antigen matched to the oocyte donor, could therefore provide a potential source of MHC matched cells or tissue for cell replacement therapy. In this review, we summarized the mechanism of deriving heterozygous MHC-matched pES cells using a mouse and human models.