{"title":"Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity","authors":"Beatriz Roldan Cuenya , Farzad Behafarid","doi":"10.1016/j.surfrep.2015.01.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In recent years, the field of catalysis has experienced an astonishing transformation, driven in part by more demanding environmental standards and critical societal and industrial needs such as the search for alternative energy sources. Thanks to the advent of nanotechnology, major steps have been made towards the rational design of novel catalysts. Striking new catalytic properties, including greatly enhanced reactivities and selectivities, have been reported for </span>nanoparticle (NP) catalysts as compared to their bulk counterparts. However, in order to harness the power of these nanocatalysts, a detailed understanding of the origin of their enhanced performance is needed. The present review focuses on the role of the NP size and shape on </span>chemisorption<span><span> and catalytic performance. Since homogeneity in NP size and shape is a prerequisite for the understanding of structure–reactivity correlations, we first review different synthesis methods that result in narrow NP size distributions and shape controlled NPs. Next, size-dependent phenomena which influence the chemical reactivity of NPs, including quantum size-effects and the presence of under-coordinated surface atoms are examined. The effect of the NP shape on catalytic performance is discussed and explained based on the existence of different atomic structures on the NP surface with distinct chemisorption properties. The influence of additional factors, such as the </span>oxidation state of the NPs and NP–support interactions, is also considered in the frame of the size- and shape-dependency that these phenomena present. Ultimately, our review highlights the importance of achieving a systematic understanding of the factors that control the activity and selectivity of a catalyst in order to avoid trial and error methods in the rational design of the new generation of nanocatalysts with properties tunable at the atomic level.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"70 2","pages":"Pages 135-187"},"PeriodicalIF":8.2000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2015.01.001","citationCount":"254","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572915000023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 254
Abstract
In recent years, the field of catalysis has experienced an astonishing transformation, driven in part by more demanding environmental standards and critical societal and industrial needs such as the search for alternative energy sources. Thanks to the advent of nanotechnology, major steps have been made towards the rational design of novel catalysts. Striking new catalytic properties, including greatly enhanced reactivities and selectivities, have been reported for nanoparticle (NP) catalysts as compared to their bulk counterparts. However, in order to harness the power of these nanocatalysts, a detailed understanding of the origin of their enhanced performance is needed. The present review focuses on the role of the NP size and shape on chemisorption and catalytic performance. Since homogeneity in NP size and shape is a prerequisite for the understanding of structure–reactivity correlations, we first review different synthesis methods that result in narrow NP size distributions and shape controlled NPs. Next, size-dependent phenomena which influence the chemical reactivity of NPs, including quantum size-effects and the presence of under-coordinated surface atoms are examined. The effect of the NP shape on catalytic performance is discussed and explained based on the existence of different atomic structures on the NP surface with distinct chemisorption properties. The influence of additional factors, such as the oxidation state of the NPs and NP–support interactions, is also considered in the frame of the size- and shape-dependency that these phenomena present. Ultimately, our review highlights the importance of achieving a systematic understanding of the factors that control the activity and selectivity of a catalyst in order to avoid trial and error methods in the rational design of the new generation of nanocatalysts with properties tunable at the atomic level.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.