Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Dimitar A. Panayotov , John R. Morris
{"title":"Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions","authors":"Dimitar A. Panayotov ,&nbsp;John R. Morris","doi":"10.1016/j.surfrep.2016.01.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>The fascinating particle size dependence to the physical, photophysical, and chemical properties of gold has motivated thousands of studies focused on exploring the ability of supported gold nanoparticles to catalyze chemical transformations. In particular, titanium dioxide-supported gold (Au/TiO</span><sub>2</sub><span>) nanoparticles may provide the right combination of electronic structure, structural dynamics, and stability to affect catalysis in important practical applications from environmental remediation to selective hydrogenation to carbon monoxide<span> oxidation. Harnessing the full potential of Au/TiO</span></span><sub>2</sub><span> will require a detailed atomic-scale understanding of the thermal and photolytic processes that accompany chemical conversion. This review describes some of the unique properties exhibited by particulate gold before delving into how those properties affect chemistry<span> on titania supports. Particular attention is given first to thermally driven reactions on single crystal system. This review then addresses nanoparticulate samples in an effort begin to bridge the so-called materials gap. Building on the foundation provided by the large body of work in the field of thermal catalysis, the review describes new research into light-driven catalysis on Au/TiO</span></span><sub>2</sub><span>. Importantly, the reader should bear in mind throughout this review that thermal chemistry and thermal effects typically accompany photochemistry. Distinguishing between thermally-driven stages of a reaction and photo-induced steps remains a significant challenge, but one that experimentalists and theorists are beginning to decipher with new approaches. Finally, a summary of several state-of-the-art studies describes how they are illuminating new frontiers in the quest to exploit Au/TiO</span><sub>2</sub><span> as an efficient catalyst and low-energy photocatalyst.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"71 1","pages":"Pages 77-271"},"PeriodicalIF":8.2000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2016.01.002","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572916000030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 95

Abstract

The fascinating particle size dependence to the physical, photophysical, and chemical properties of gold has motivated thousands of studies focused on exploring the ability of supported gold nanoparticles to catalyze chemical transformations. In particular, titanium dioxide-supported gold (Au/TiO2) nanoparticles may provide the right combination of electronic structure, structural dynamics, and stability to affect catalysis in important practical applications from environmental remediation to selective hydrogenation to carbon monoxide oxidation. Harnessing the full potential of Au/TiO2 will require a detailed atomic-scale understanding of the thermal and photolytic processes that accompany chemical conversion. This review describes some of the unique properties exhibited by particulate gold before delving into how those properties affect chemistry on titania supports. Particular attention is given first to thermally driven reactions on single crystal system. This review then addresses nanoparticulate samples in an effort begin to bridge the so-called materials gap. Building on the foundation provided by the large body of work in the field of thermal catalysis, the review describes new research into light-driven catalysis on Au/TiO2. Importantly, the reader should bear in mind throughout this review that thermal chemistry and thermal effects typically accompany photochemistry. Distinguishing between thermally-driven stages of a reaction and photo-induced steps remains a significant challenge, but one that experimentalists and theorists are beginning to decipher with new approaches. Finally, a summary of several state-of-the-art studies describes how they are illuminating new frontiers in the quest to exploit Au/TiO2 as an efficient catalyst and low-energy photocatalyst.

Au/TiO2的表面化学:热和光解活化反应
金的物理、光物理和化学性质对粒子大小的依赖性激发了成千上万的研究,这些研究集中在探索支撑的金纳米颗粒催化化学转化的能力上。特别是,二氧化钛负载的金(Au/TiO2)纳米颗粒可以提供电子结构、结构动力学和稳定性的正确组合,从而影响从环境修复到选择性加氢到一氧化碳氧化的重要实际应用中的催化作用。利用Au/TiO2的全部潜力将需要对伴随化学转化的热和光解过程进行详细的原子尺度理解。在深入研究这些特性如何影响二氧化钛载体上的化学反应之前,本文介绍了颗粒金所表现出的一些独特特性。本文首先着重讨论了单晶体系的热驱动反应。这篇综述随后讨论了纳米颗粒样品,试图开始弥补所谓的材料缺口。在热催化领域大量工作的基础上,本文描述了Au/TiO2光驱动催化的新研究。重要的是,在这篇综述中,读者应该记住,热化学和热效应通常伴随着光化学。区分反应的热驱动阶段和光诱导步骤仍然是一个重大挑战,但实验家和理论家正在开始用新的方法来解读。最后,总结了几项最新的研究,描述了它们如何在探索利用Au/TiO2作为高效催化剂和低能光催化剂的过程中照亮了新的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信