[Synapse elimination and functional neural circuit formation in the cerebellum].

Masanobu Kano
{"title":"[Synapse elimination and functional neural circuit formation in the cerebellum].","authors":"Masanobu Kano","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal connections are initially redundant, but unnecessary connections are eliminated subsequently during postnatal development. This process, known as 'synapse elimination', is thought to be crucial for establishing functionally mature neural circuits. The climbing fiber (CF) to the Purkinje cell (PC) synapse in the cerebellum is a representative model of synapse elimination. We disclose that one-to-one connection from CF to PC is established through four distinct phases: (1) strengthening of a single CF among multiple CFs in each PC at P3-P7, (2) translocation of a single strengthened CF to PC dendrites from around P9, and (3) early phase (P7 to around P11) and (4) late phase (around P12 to P17) of elimination of weak CF synapses from PC somata. Mice with PC-selective deletion of P/Q-type voltage-dependent Ca2+ channel (VDCC) exhibit severe defects in strengthening of single CFs, dendritic translocation of single CFs and CF elimination from P7. In contrast, mice with a mutation of a single allele for the GABA-synthesizing enzyme GAD67 have a selective impairment of CF elimination from P10 due to reduced inhibition and elevated Ca2+ influx to PC somata. Thus, regulation of Ca2+ influx to PCs is crucial for the four phases of CF synapse elimination.</p>","PeriodicalId":19250,"journal":{"name":"Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology","volume":"33 3","pages":"137-40"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal connections are initially redundant, but unnecessary connections are eliminated subsequently during postnatal development. This process, known as 'synapse elimination', is thought to be crucial for establishing functionally mature neural circuits. The climbing fiber (CF) to the Purkinje cell (PC) synapse in the cerebellum is a representative model of synapse elimination. We disclose that one-to-one connection from CF to PC is established through four distinct phases: (1) strengthening of a single CF among multiple CFs in each PC at P3-P7, (2) translocation of a single strengthened CF to PC dendrites from around P9, and (3) early phase (P7 to around P11) and (4) late phase (around P12 to P17) of elimination of weak CF synapses from PC somata. Mice with PC-selective deletion of P/Q-type voltage-dependent Ca2+ channel (VDCC) exhibit severe defects in strengthening of single CFs, dendritic translocation of single CFs and CF elimination from P7. In contrast, mice with a mutation of a single allele for the GABA-synthesizing enzyme GAD67 have a selective impairment of CF elimination from P10 due to reduced inhibition and elevated Ca2+ influx to PC somata. Thus, regulation of Ca2+ influx to PCs is crucial for the four phases of CF synapse elimination.

[小脑突触消除和功能性神经回路形成]。
神经元连接最初是冗余的,但随后在出生后发育过程中消除了不必要的连接。这个过程被称为“突触消除”,被认为是建立功能成熟的神经回路的关键。小脑浦肯野细胞(PC)突触的攀爬纤维(CF)是突触消除的典型模型。我们发现,CF与PC之间的一对一连接是通过四个不同的阶段建立的:(1)在P3-P7的每个PC的多个CF中单个CF加强,(2)单个增强的CF从P9周围转位到PC树突,(3)早期阶段(P7到P11周围)和(4)晚期(P12到P17周围)从PC体细胞中消除弱CF突触。pc选择性缺失P/ q型电压依赖性Ca2+通道(VDCC)的小鼠在单个CFs的增强、单个CFs的树突状移位和P7的CF消除方面表现出严重缺陷。相比之下,gaba合成酶GAD67单一等位基因突变的小鼠,由于抑制减少和Ca2+内流升高,P10对CF的消除选择性受损。因此,Ca2+内流到PCs的调节对于CF突触消除的四个阶段至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信