Yang Liu , Zhixin Wei , Mengna He , Wenbin Zhao , Jinfeng Wang , Juan Zhao
{"title":"Preparation of dopamine-modified sea squirt cellulose hydrogel dust-fixing agent to prevent raising of dust","authors":"Yang Liu , Zhixin Wei , Mengna He , Wenbin Zhao , Jinfeng Wang , Juan Zhao","doi":"10.1016/j.envres.2023.116803","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Sea squirts, a tunicate, are found in all oceans and can foul marine ports and aquaculture, mainly affecting shipping and biodiversity. In this study, cellulose was extracted from sea squirts, and its hydrophilic properties were improved by substituting the hydrogen ions of the cellulose –OH with dopamine. The modified cellulose was used to prepare a hydrogel for use as a dust-fixing agent (CDP) to reduce air pollution caused by dust. After response surface method optimization, the proportions of binder, water-retaining agent, wetting agent, and </span>antifreeze<span> in CDP were 0.97, 1.44, 0.23, and 6.32%, respectively. This composition improved the wetting ability and permeability of CDP on particle surfaces. CDP exhibited good water retention at -11–50 °C. CDP reduced the wind erosion rate of dust at a </span></span>wind speed<span> of 12 m/s to 1.18%. The molecular dynamics method was used to analyze the wetting process and mechanism of CDP, revealing that hydrogen bonds were the dominant force at the solid-liquid interface. The adsorption of CDP onto the surface of coal increased the number of hydrophilic points. Water molecules were adsorbed on these hydrophilic points through hydrogen bonding, improving the binding energy between the solid and liquid interfaces. The application of ascidian cellulose in dust control makes full use of the biological value of ascidians, promoting sustainable development of the global biological economy.</span></p></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"237 ","pages":"Article 116803"},"PeriodicalIF":7.7000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935123016079","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sea squirts, a tunicate, are found in all oceans and can foul marine ports and aquaculture, mainly affecting shipping and biodiversity. In this study, cellulose was extracted from sea squirts, and its hydrophilic properties were improved by substituting the hydrogen ions of the cellulose –OH with dopamine. The modified cellulose was used to prepare a hydrogel for use as a dust-fixing agent (CDP) to reduce air pollution caused by dust. After response surface method optimization, the proportions of binder, water-retaining agent, wetting agent, and antifreeze in CDP were 0.97, 1.44, 0.23, and 6.32%, respectively. This composition improved the wetting ability and permeability of CDP on particle surfaces. CDP exhibited good water retention at -11–50 °C. CDP reduced the wind erosion rate of dust at a wind speed of 12 m/s to 1.18%. The molecular dynamics method was used to analyze the wetting process and mechanism of CDP, revealing that hydrogen bonds were the dominant force at the solid-liquid interface. The adsorption of CDP onto the surface of coal increased the number of hydrophilic points. Water molecules were adsorbed on these hydrophilic points through hydrogen bonding, improving the binding energy between the solid and liquid interfaces. The application of ascidian cellulose in dust control makes full use of the biological value of ascidians, promoting sustainable development of the global biological economy.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.