{"title":"Biochemical reactions remote-sensitized by excitons propagating across macroscopic distances along biological fibers: Isomerization of 11-cis-retinal","authors":"Igor Khmelinskii , Vladimir Makarov","doi":"10.1016/j.jpap.2023.100202","DOIUrl":null,"url":null,"abstract":"<div><p>Presently we report a second example of a biochemical reaction sensitized remotely by excitons (electronic excited states) efficiently transferred along intermediate filaments (IFs) over macroscopic distances. IFs are excellent conductors of energy in the form of excitons, with the efficiency of ca. 0.53 reported <em>in vitro</em>. Excitons were generated by visible light and propagated along Müller cell (MC) intermediate filaments, about 100 μm long. These experiments used a capillary matrix filled by MC IFs extracted from porcine retina. Excitons induced efficient isomerization of 11-cis- to all-trans-retinal, with the reaction quantum yield <em>φ<sub>cis/trans</sub></em> = 0.347 obtained for 11-cis-retinal concentration of 1.0 × 10<sup>−3</sup> M (0.284 g/L) using 546 nm light at 6.87 mW/cm<sup>2</sup> power density. Exciton quantum yield <em>φ<sub>exc</sub></em> at 546 nm was also measured in function of radiation power density, with nonlinearity indicative of biphotonic processes. This is the first case of biphotonic processes occurring at such low light intensities with steady-state illumination. The present results support quantum mechanism of high-contrast vision of vertebrate eyes.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"17 ","pages":"Article 100202"},"PeriodicalIF":3.2610,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266646902300043X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Presently we report a second example of a biochemical reaction sensitized remotely by excitons (electronic excited states) efficiently transferred along intermediate filaments (IFs) over macroscopic distances. IFs are excellent conductors of energy in the form of excitons, with the efficiency of ca. 0.53 reported in vitro. Excitons were generated by visible light and propagated along Müller cell (MC) intermediate filaments, about 100 μm long. These experiments used a capillary matrix filled by MC IFs extracted from porcine retina. Excitons induced efficient isomerization of 11-cis- to all-trans-retinal, with the reaction quantum yield φcis/trans = 0.347 obtained for 11-cis-retinal concentration of 1.0 × 10−3 M (0.284 g/L) using 546 nm light at 6.87 mW/cm2 power density. Exciton quantum yield φexc at 546 nm was also measured in function of radiation power density, with nonlinearity indicative of biphotonic processes. This is the first case of biphotonic processes occurring at such low light intensities with steady-state illumination. The present results support quantum mechanism of high-contrast vision of vertebrate eyes.