{"title":"Sustainable developments in polyolefin chemistry: Progress, challenges, and outlook","authors":"Xiao-Yan Wang , Yanshan Gao , Yong Tang","doi":"10.1016/j.progpolymsci.2023.101713","DOIUrl":null,"url":null,"abstract":"<div><p><span>Polyolefins are the largest-scale synthetic plastics and play a key role in modern society. Their production consumes huge amounts of fossil-derived </span>monomer<span><span> feedstocks, which unfortunately became discarded wastes after use with a very low recycling ratio, causing severe environmental pollution and huge consumption of non-renewable resources. This lack of sustainability could in principle be solved by reusing the waste polyolefins repeatedly as virgin materials or recovering </span>olefin monomers for re-entering the polyolefin cycle. However, it is challenging due to their chemical inertness (C-H and C-C bonds) and lack of degradation sites along the polyolefin chains. Therefore, to make polyolefins more sustainable, degrading or modifying the waste polyolefins on large scales could facilitate their reuse as virgin polyolefins or recovery to polymerizable feedstocks, rethinking the design and synthesis from monomer feedstocks could afford inherently recyclable and thus more sustainable polyolefin or polyolefin-like materials. Given the above, this review will introduce recent progress in the rapidly advancing field: 1) Recycling and upcycling to fuels and other small molecule products, olefin monomer, telechelic products, reprocessable and functional polyolefin materials; 2) Increasing sustainability by the de novo design and synthesis of new degradable and reprocessable polyolefin and polyolefin-like polymers.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"143 ","pages":"Article 101713"},"PeriodicalIF":26.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023000680","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Polyolefins are the largest-scale synthetic plastics and play a key role in modern society. Their production consumes huge amounts of fossil-derived monomer feedstocks, which unfortunately became discarded wastes after use with a very low recycling ratio, causing severe environmental pollution and huge consumption of non-renewable resources. This lack of sustainability could in principle be solved by reusing the waste polyolefins repeatedly as virgin materials or recovering olefin monomers for re-entering the polyolefin cycle. However, it is challenging due to their chemical inertness (C-H and C-C bonds) and lack of degradation sites along the polyolefin chains. Therefore, to make polyolefins more sustainable, degrading or modifying the waste polyolefins on large scales could facilitate their reuse as virgin polyolefins or recovery to polymerizable feedstocks, rethinking the design and synthesis from monomer feedstocks could afford inherently recyclable and thus more sustainable polyolefin or polyolefin-like materials. Given the above, this review will introduce recent progress in the rapidly advancing field: 1) Recycling and upcycling to fuels and other small molecule products, olefin monomer, telechelic products, reprocessable and functional polyolefin materials; 2) Increasing sustainability by the de novo design and synthesis of new degradable and reprocessable polyolefin and polyolefin-like polymers.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.