Influence of oleogel/hydrogel ratios and emulsifiers on structural and digestion properties of food-grade 3D printed bigels as carriers for quercetin and catechin
Dengke Xie , Hong Hu , Qingrong Huang , Xuanxuan Lu
{"title":"Influence of oleogel/hydrogel ratios and emulsifiers on structural and digestion properties of food-grade 3D printed bigels as carriers for quercetin and catechin","authors":"Dengke Xie , Hong Hu , Qingrong Huang , Xuanxuan Lu","doi":"10.1016/j.foodhyd.2023.108948","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Bigels are system with great potential in 3D printing and bioactive compound delivery. In this study, 3D printed bigels based on candelilla wax oleogel and gelatin hydrogel were developed as delivery system for hydrophilic and lipophilic bioactives (namely, quercetin and catechin). Bigels with monoglyceride or </span>lecithin formed stable gel system with 3D printing ability. Microstructural study found that changing of oleogel/hydrogel ratios (3:7, 5:5, and 7:3) under the presence of different emulsifiers (monoglyceride and lecithin) led to structural transformation of bigels from oleogel-in-hydrogel structure to hydrogel-in-oleogel or bicontinuous status. Low frequency-NMR analysis indicated that the signals of typical T</span><sub>2</sub> relaxation peak were changed accordingly with variations of oleogel/hydrogel ratio and using of different emulsifiers. XRD patterns of bigels revealed their crystalline peaks grew with increase of oleogel content. <em>In vitro</em><span> digestion study found that both oleogel/hydrogel ratio and emulsifiers used exhibited large influence on the lipolysis extent, release rate of quercetin and catechin from bigels. The highest release rate for catechin (53.37%) and quercetin (11.08%) were observed in bigels containing monoglyceride with 70% oleogel and lecithin with 30% oleogel after simulated digestion, respectively. This study provided valuable guidance for developing bigels as 3D printed food with potential in co-delivery of hydrophilic and lipophilic bioactives by adjusting oleogel/hydrogel ratios and emulsifiers used.</span></p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"144 ","pages":"Article 108948"},"PeriodicalIF":11.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X23004940","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
Bigels are system with great potential in 3D printing and bioactive compound delivery. In this study, 3D printed bigels based on candelilla wax oleogel and gelatin hydrogel were developed as delivery system for hydrophilic and lipophilic bioactives (namely, quercetin and catechin). Bigels with monoglyceride or lecithin formed stable gel system with 3D printing ability. Microstructural study found that changing of oleogel/hydrogel ratios (3:7, 5:5, and 7:3) under the presence of different emulsifiers (monoglyceride and lecithin) led to structural transformation of bigels from oleogel-in-hydrogel structure to hydrogel-in-oleogel or bicontinuous status. Low frequency-NMR analysis indicated that the signals of typical T2 relaxation peak were changed accordingly with variations of oleogel/hydrogel ratio and using of different emulsifiers. XRD patterns of bigels revealed their crystalline peaks grew with increase of oleogel content. In vitro digestion study found that both oleogel/hydrogel ratio and emulsifiers used exhibited large influence on the lipolysis extent, release rate of quercetin and catechin from bigels. The highest release rate for catechin (53.37%) and quercetin (11.08%) were observed in bigels containing monoglyceride with 70% oleogel and lecithin with 30% oleogel after simulated digestion, respectively. This study provided valuable guidance for developing bigels as 3D printed food with potential in co-delivery of hydrophilic and lipophilic bioactives by adjusting oleogel/hydrogel ratios and emulsifiers used.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.