Development of β-cyclodextrin crosslinked citric acid encapsulated in polypropylene membrane protected-μ-solid-phase extraction device for enhancing the separation and preconcentration of endocrine disruptor compounds
Muhammad Nur’ Hafiz Rozaini , Bahruddin Saad , Jun Wei Lim , Noorfatimah Yahaya , Muggundha Raoov Ramachandran , Worapon Kiatkittipong , Mardawani Mohamad , Yi Jing Chan , Pei Sean Goh , Maizatul Shima Shaharun
{"title":"Development of β-cyclodextrin crosslinked citric acid encapsulated in polypropylene membrane protected-μ-solid-phase extraction device for enhancing the separation and preconcentration of endocrine disruptor compounds","authors":"Muhammad Nur’ Hafiz Rozaini , Bahruddin Saad , Jun Wei Lim , Noorfatimah Yahaya , Muggundha Raoov Ramachandran , Worapon Kiatkittipong , Mardawani Mohamad , Yi Jing Chan , Pei Sean Goh , Maizatul Shima Shaharun","doi":"10.1016/j.chemosphere.2022.135075","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Endocrine disruptor compounds (EDCs) such as </span>plasticisers, surfactants, pharmaceutical products, personal care products and pesticides are frequently released into the environmental waters. Therefore, a sensitive and environmentally friendly method is entailed to quantify these compounds at their trace level concentrations. This study encapsulated the β-cyclodextrin crosslinked with </span>citric acid<span> in a polypropylene membrane protected-μ-solid phase extraction (BCD-CA μ-SPE) device for preconcentrating the EDCs (triclosan, triclocarban, 2-phenylphenol, 4-</span></span><em>tert</em><span><span>-octylphenols and bisphenol<span> A) in real water samples before the analysis by high-performance liquid chromatography. FT-IR and </span></span>TGA results indicated that BCD-CA was successfully synthesised with the formation of ester linkage (1078.33 cm</span><sup>−1</sup><span>) and O–H stretching from carboxylic acid (3434.70 cm</span><sup>−1</sup><span>) with higher thermal stability as compared with native CD with the remaining weight above 72.1% at 500 °C. Several critical parameters such as the sorbent loading, type and amount of salts, extraction time, sample volume, sample pH, type and volume of desorption solvents and desorption time were sequentially optimised and statistically validated. Under the optimum condition, the use of BCD-CA μ-SPE device had manifested good linearity (0.5–500 μg L</span><sup>−1</sup>) with the determination of the coefficient range of 0.9807–0.9979. The <em>p-</em>values for the <em>F</em>-test and <em>t</em>-test (6.60 × 10<sup>−8</sup> – 1.77 × 10<sup>−5</sup>) were lesser than 0.05 and low detection limits ranging from 0.27 to 0.84 μg L<sup>−1</sup><span> for all studied EDCs. The developed technique was also successfully applied for EDC analyses in four distinct real water samples, namely, wastewater, river water, tap water<span> and mineral water, with good EDCs recoveries (80.2%–99.9%), low relative standard deviations (0.1%–3.8%, n = 3) with enrichment factor ranging from 9 to 82 folds. These results signified the potential of the BCD-CA μ-SPE device as an efficient, sensitive, and environmentally friendly approach for analyzing EDCs.</span></span></p></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653522015685","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7
Abstract
Endocrine disruptor compounds (EDCs) such as plasticisers, surfactants, pharmaceutical products, personal care products and pesticides are frequently released into the environmental waters. Therefore, a sensitive and environmentally friendly method is entailed to quantify these compounds at their trace level concentrations. This study encapsulated the β-cyclodextrin crosslinked with citric acid in a polypropylene membrane protected-μ-solid phase extraction (BCD-CA μ-SPE) device for preconcentrating the EDCs (triclosan, triclocarban, 2-phenylphenol, 4-tert-octylphenols and bisphenol A) in real water samples before the analysis by high-performance liquid chromatography. FT-IR and TGA results indicated that BCD-CA was successfully synthesised with the formation of ester linkage (1078.33 cm−1) and O–H stretching from carboxylic acid (3434.70 cm−1) with higher thermal stability as compared with native CD with the remaining weight above 72.1% at 500 °C. Several critical parameters such as the sorbent loading, type and amount of salts, extraction time, sample volume, sample pH, type and volume of desorption solvents and desorption time were sequentially optimised and statistically validated. Under the optimum condition, the use of BCD-CA μ-SPE device had manifested good linearity (0.5–500 μg L−1) with the determination of the coefficient range of 0.9807–0.9979. The p-values for the F-test and t-test (6.60 × 10−8 – 1.77 × 10−5) were lesser than 0.05 and low detection limits ranging from 0.27 to 0.84 μg L−1 for all studied EDCs. The developed technique was also successfully applied for EDC analyses in four distinct real water samples, namely, wastewater, river water, tap water and mineral water, with good EDCs recoveries (80.2%–99.9%), low relative standard deviations (0.1%–3.8%, n = 3) with enrichment factor ranging from 9 to 82 folds. These results signified the potential of the BCD-CA μ-SPE device as an efficient, sensitive, and environmentally friendly approach for analyzing EDCs.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture