{"title":"Microwave-assisted stripping of oil contaminated drill cuttings","authors":"J.P. Robinson, S.W. Kingman, O. Onobrakpeya","doi":"10.1016/j.jenvman.2007.02.009","DOIUrl":null,"url":null,"abstract":"<div><p><span>The application of microwave heating technology to conventional gas stripping processes has been investigated in the remediation of contaminated drill cuttings. The </span>technical feasibility<span> and limitations of nitrogen and steam stripping processes are demonstrated, and it is shown that the combination of microwave heating with the stripping process offers a step change in performance. Order of magnitude improvements in processing time are shown for the microwave-assisted processes, as well as greatly improved levels of remediation. The mechanisms of contaminant removal are discussed, along with the phenomena which occur with microwave heating processes. The energy requirements of each of pure gas and microwave-assisted processes are also discussed, and the potential applications of each technology are highlighted relative to the overall remediation requirements.</span></p></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jenvman.2007.02.009","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479707000904","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 47
Abstract
The application of microwave heating technology to conventional gas stripping processes has been investigated in the remediation of contaminated drill cuttings. The technical feasibility and limitations of nitrogen and steam stripping processes are demonstrated, and it is shown that the combination of microwave heating with the stripping process offers a step change in performance. Order of magnitude improvements in processing time are shown for the microwave-assisted processes, as well as greatly improved levels of remediation. The mechanisms of contaminant removal are discussed, along with the phenomena which occur with microwave heating processes. The energy requirements of each of pure gas and microwave-assisted processes are also discussed, and the potential applications of each technology are highlighted relative to the overall remediation requirements.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture