{"title":"Limited inhibitory effects of non-steroidal antiinflammatory drugs on in vitro osteogenic differentiation in canine cells.","authors":"Namgil Oh, Takafumi Sunaga, Hiroki Yamazaki, Kenji Hosoya, Satoshi Takagi, Masahiro Okumura","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclooxygenase (COX)-2 participates essentially in bone healing, demonstrated by COX-2 knockout mice that showed delayed fracture repair. Considerable controversy still exists on inhibitory effects of COX-2 inhibitors on bone healing in clinical cases. To assess stage-dependent effects of short-term treatment of COX-2 inhibitors on osteogenic differentiation, a canine POS osteosarcoma cell line which spontaneously differentiates into osteoblastic cell was exposed to COX-2 inhibitors such as carprofen and meloxicam for 72 hours during three different stages of osteoblast differentiation, including day 0 to 3 (pre-osteoblastic stage), day 4 to 7 (transitional stage) and day 8 to 11 (mature osteoblastic stage). As osteogenic markers, expression of alkaline phosphatase (ALP) was estimated by analysis of mRNA expression, enzymatic activity and ALP staining, and expression of osteocalcin was estimated by analysis of mRNA expression after the drug treatments. Calcified matrix formation was finally observed by von Kossa staining on day 14. Expressions of ALP showed no significant suppression by carprofen and meloxicam during all three stages. However, expressions of osteocalcin mRNA and non-calcified nodule formations were delayed by carprofen and meloxicam during transitional stage. Nevertheless, fully calcified nodule formation was observed in all experimental groups during post-medication period. These results indicate that short-term treatment of carprofen and meloxicam would reversibly suppress the differentiation of osteoblasts.</p>","PeriodicalId":56285,"journal":{"name":"Japanese Journal of Veterinary Research","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Veterinary Research","FirstCategoryId":"97","ListUrlMain":"","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclooxygenase (COX)-2 participates essentially in bone healing, demonstrated by COX-2 knockout mice that showed delayed fracture repair. Considerable controversy still exists on inhibitory effects of COX-2 inhibitors on bone healing in clinical cases. To assess stage-dependent effects of short-term treatment of COX-2 inhibitors on osteogenic differentiation, a canine POS osteosarcoma cell line which spontaneously differentiates into osteoblastic cell was exposed to COX-2 inhibitors such as carprofen and meloxicam for 72 hours during three different stages of osteoblast differentiation, including day 0 to 3 (pre-osteoblastic stage), day 4 to 7 (transitional stage) and day 8 to 11 (mature osteoblastic stage). As osteogenic markers, expression of alkaline phosphatase (ALP) was estimated by analysis of mRNA expression, enzymatic activity and ALP staining, and expression of osteocalcin was estimated by analysis of mRNA expression after the drug treatments. Calcified matrix formation was finally observed by von Kossa staining on day 14. Expressions of ALP showed no significant suppression by carprofen and meloxicam during all three stages. However, expressions of osteocalcin mRNA and non-calcified nodule formations were delayed by carprofen and meloxicam during transitional stage. Nevertheless, fully calcified nodule formation was observed in all experimental groups during post-medication period. These results indicate that short-term treatment of carprofen and meloxicam would reversibly suppress the differentiation of osteoblasts.
期刊介绍:
The Japanese Journal of Veterinary Research (JJVR) quarterly publishes peer-reviewed articles on all aspects of veterinary science. JJVR was originally published as a “University Journal” of veterinary science at Hokkaido University from more than 60 years ago. Currently, JJVR, is Japan’s leading scientific veterinary journal, and provides valuable information for the development of veterinary science by welcoming contributions from researchers worldwide.
JJVR offers online submission for Regular Papers, Short Communications, and Review Articles that are unpublished and not being considered for publication elsewhere. Research areas include:
Anatomy, Physiology, Biochemistry, Pharmacology, Microbiology, Infectious diseases, Parasitology, Laboratory Animal Science and Medicine, Internal Medicine, Surgery, Pathology, Theriogenology, Molecular Medicine, Public Health, Radiation Biology, Toxicology, Wildlife Biology and Medicine, Veterinary Hygiene, The other fields related to veterinary science.