Christian Sohlenkamp, Christian R H Raetz, Brian O Ingram
{"title":"The calcium-stimulated lipid A 3-O deacylase from Rhizobium etli is not essential for plant nodulation.","authors":"Christian Sohlenkamp, Christian R H Raetz, Brian O Ingram","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The lipid A component of lipopolysaccharide from the nitrogen-fixing plant endosymbiont, Rhizobium etli, is structurally very different from that found in most enteric bacteria. The lipid A from free-living R. etli is structurally heterogeneous and exists as a mixture of species which are either pentaacylated or tetraacylated. In contrast, the lipid A from R. etli bacteroids is reported to consist exclusively of tetraacylated lipid A species. The tetraacylated lipid A species in both cases lack a beta-hydroxymyristoyl chain at the 3-position of lipid A. Here, we show that the lipid A modification enzyme responsible for 3-O deacylation in R. etli is a homolog of the PagL protein originally described in Salmonella enterica sv. typhimurium. In contrast to the PagL proteins described from other species, R. etli PagL displays a calcium dependency. To determine the importance of the lipid A modification catalyzed by PagL, we isolated and characterized a R. etli mutant deficient in the pagL gene. Mass spectrometric analysis confirmed that the mutant strain was exclusively tetraacylated and radiochemical analysis revealed that 3-O deacylase activity was absent in membranes prepared from the mutant. The R. etli mutant was not impaired in its ability to form nitrogen-fixing nodules on Phaseolus vulgaris but it displayed slower nodulation kinetics relative to the wild-type strain. The lipid A modification catalyzed by R. etli PagL, therefore, is not required for nodulation but may play other roles such as protecting bacterial endosymbionts from plant immune responses during infection.</p>","PeriodicalId":8811,"journal":{"name":"Biochimica et biophysica acta","volume":"1831 7","pages":"1250-9"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The lipid A component of lipopolysaccharide from the nitrogen-fixing plant endosymbiont, Rhizobium etli, is structurally very different from that found in most enteric bacteria. The lipid A from free-living R. etli is structurally heterogeneous and exists as a mixture of species which are either pentaacylated or tetraacylated. In contrast, the lipid A from R. etli bacteroids is reported to consist exclusively of tetraacylated lipid A species. The tetraacylated lipid A species in both cases lack a beta-hydroxymyristoyl chain at the 3-position of lipid A. Here, we show that the lipid A modification enzyme responsible for 3-O deacylation in R. etli is a homolog of the PagL protein originally described in Salmonella enterica sv. typhimurium. In contrast to the PagL proteins described from other species, R. etli PagL displays a calcium dependency. To determine the importance of the lipid A modification catalyzed by PagL, we isolated and characterized a R. etli mutant deficient in the pagL gene. Mass spectrometric analysis confirmed that the mutant strain was exclusively tetraacylated and radiochemical analysis revealed that 3-O deacylase activity was absent in membranes prepared from the mutant. The R. etli mutant was not impaired in its ability to form nitrogen-fixing nodules on Phaseolus vulgaris but it displayed slower nodulation kinetics relative to the wild-type strain. The lipid A modification catalyzed by R. etli PagL, therefore, is not required for nodulation but may play other roles such as protecting bacterial endosymbionts from plant immune responses during infection.