Mali Zhao, Dohyun Kim, Van Luan Nguyen, Jinbao Jiang, Linfeng Sun, Young Hee Lee, Heejun Yang*
{"title":"Coherent Thermoelectric Power from Graphene Quantum Dots","authors":"Mali Zhao, Dohyun Kim, Van Luan Nguyen, Jinbao Jiang, Linfeng Sun, Young Hee Lee, Heejun Yang*","doi":"10.1021/acs.nanolett.8b03208","DOIUrl":null,"url":null,"abstract":"<p >The quantum confinement of charge carriers has been a promising approach to enhance the efficiency of thermoelectric devices, by lowering the dimension of materials and raising the boundary phonon scattering rate. The role of quantum confinement in thermoelectric efficiency has been investigated by using macroscopic device-scale measurements based on diffusive electron transport with the thermal de Broglie wavelength of the electrons. Here, we report a new class of thermoelectric operation originating from quasi-bound state electrons in low-dimensional materials. Coherent thermoelectric power from confined charges was observed at room temperature in graphene quantum dots with diameters of several nanometers. The graphene quantum dots, electrostatically defined as circular n–p–n junctions to isolate charges in the p-type graphene quantum dots, enabled thermoelectric microscopy at the atomic scale, revealing weakly localized and coherent thermoelectric power generation. The conceptual thermoelectric operation provides new insights, selectively enhancing coherent thermoelectric power via resonant states of charge carriers in low-dimensional materials.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"19 1","pages":"61–68"},"PeriodicalIF":9.1000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.nanolett.8b03208","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.8b03208","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 21
Abstract
The quantum confinement of charge carriers has been a promising approach to enhance the efficiency of thermoelectric devices, by lowering the dimension of materials and raising the boundary phonon scattering rate. The role of quantum confinement in thermoelectric efficiency has been investigated by using macroscopic device-scale measurements based on diffusive electron transport with the thermal de Broglie wavelength of the electrons. Here, we report a new class of thermoelectric operation originating from quasi-bound state electrons in low-dimensional materials. Coherent thermoelectric power from confined charges was observed at room temperature in graphene quantum dots with diameters of several nanometers. The graphene quantum dots, electrostatically defined as circular n–p–n junctions to isolate charges in the p-type graphene quantum dots, enabled thermoelectric microscopy at the atomic scale, revealing weakly localized and coherent thermoelectric power generation. The conceptual thermoelectric operation provides new insights, selectively enhancing coherent thermoelectric power via resonant states of charge carriers in low-dimensional materials.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.