Takao Miki, Misty Chen-Goodspeed, Zhaoyang Zhao, Cheng Chi Lee
{"title":"Circadian behavior of mice deficient in PER1/PML or PER2/PML.","authors":"Takao Miki, Misty Chen-Goodspeed, Zhaoyang Zhao, Cheng Chi Lee","doi":"10.1186/1740-3391-11-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Our recent studies demonstrate that the murine homolog of the human tumor suppressor promyelocytic leukemia (PML) regulates circadian behavior of mice. To further gather insight into PML's contribution to circadian behavior, we generated two strains of mice deficient in one of the two period (Per) genes and the PML gene, with Per1-/-/Pml-/- and Per2-/-/Pml-/- genotypes.</p><p><strong>Results: </strong>Here we report the circadian behavior of these mice based on wheel-running behavioral analysis. In a free-running environment, the Per1-/-/Pml-/- mice maintained circadian rhythm but displayed a significantly shorter period of 22.2 h. In addition, these mice displayed significantly enhanced phase response to a light pulse given at zeitgeber time (ZT) 14 and 22. The Per2-/-/Pml-/- mice lose persistent rhythm when in a free-running environment, as also the case for Per2-/- mice. A transient post-light pulse rhythm seen in the arrhythmic Per2-/- mice was less apparent in Per2-/-/Pml-/- mice. Both the Per1-/-/Pml-/- and Per2-/-/Pml-/- mice displayed a more advanced phase angle of entrainment activity during light-dark cycles than the single gene deficient mice.</p><p><strong>Conclusions: </strong>Beyond merely regulating PER1 and PER2, the current behavioral studies suggest PML has additional roles in mouse circadian behavior.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"11 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1740-3391-11-9","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1740-3391-11-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
Abstract
Background: Our recent studies demonstrate that the murine homolog of the human tumor suppressor promyelocytic leukemia (PML) regulates circadian behavior of mice. To further gather insight into PML's contribution to circadian behavior, we generated two strains of mice deficient in one of the two period (Per) genes and the PML gene, with Per1-/-/Pml-/- and Per2-/-/Pml-/- genotypes.
Results: Here we report the circadian behavior of these mice based on wheel-running behavioral analysis. In a free-running environment, the Per1-/-/Pml-/- mice maintained circadian rhythm but displayed a significantly shorter period of 22.2 h. In addition, these mice displayed significantly enhanced phase response to a light pulse given at zeitgeber time (ZT) 14 and 22. The Per2-/-/Pml-/- mice lose persistent rhythm when in a free-running environment, as also the case for Per2-/- mice. A transient post-light pulse rhythm seen in the arrhythmic Per2-/- mice was less apparent in Per2-/-/Pml-/- mice. Both the Per1-/-/Pml-/- and Per2-/-/Pml-/- mice displayed a more advanced phase angle of entrainment activity during light-dark cycles than the single gene deficient mice.
Conclusions: Beyond merely regulating PER1 and PER2, the current behavioral studies suggest PML has additional roles in mouse circadian behavior.
期刊介绍:
Journal of Circadian Rhythms is an Open Access, peer-reviewed online journal that publishes research articles dealing with circadian and nycthemeral (daily) rhythms in living organisms, including processes associated with photoperiodism and daily torpor. Journal of Circadian Rhythms aims to include both basic and applied research at any level of biological organization (molecular, cellular, organic, organismal, and populational). Studies of daily rhythms in environmental factors that directly affect circadian rhythms are also pertinent to the journal"s mission.