Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: A novel epigenetic therapeutic approach.

Q1 Environmental Science
Journal of Carcinogenesis Pub Date : 2013-07-26 eCollection Date: 2013-01-01 DOI:10.4103/1477-3163.115720
Athena Starlard-Davenport, Kristi Kutanzi, Volodymyr Tryndyak, Beverly Word, Beverly Lyn-Cook
{"title":"Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: A novel epigenetic therapeutic approach.","authors":"Athena Starlard-Davenport,&nbsp;Kristi Kutanzi,&nbsp;Volodymyr Tryndyak,&nbsp;Beverly Word,&nbsp;Beverly Lyn-Cook","doi":"10.4103/1477-3163.115720","DOIUrl":null,"url":null,"abstract":"<p><p>It is well established that transcriptional silencing of critical tumor-suppressor genes by DNA methylation is a fundamental component in the initiation of breast cancer. However, the involvement of microRNAs (miRNAs) in restoring abnormal DNA methylation patterns in breast cancer is not well understood. Therefore, we investigated whether miRNA-29b, due to its complimentarity to the 3'- untranslated region of DNA methyltransferase 3A (DNMT3A) and DNMT3B, could restore normal DNA methylation patterns in human breast cancers and breast cancer cell lines. We demonstrated that transfection of pre-miRNA-29b into less aggressive MCF-7 cells, but not MDA-MB-231 mesenchymal cells, inhibited cell proliferation, decreased DNMT3A and DNMT3B messenger RNA (mRNA), and decreased promoter methylation status of ADAM23 , CCNA1, CCND2, CDH1, CDKN1C, CDKN2A, HIC1, RASSF1, SLIT2, TNFRSF10D, and TP73 tumor-suppressor genes. Using methylation polymerase chain reaction (PCR) arrays and real-time PCR, we also demonstrated that the methylation status of several critical tumor-suppressor genes increased as stage of breast disease increased, while miRNA-29b mRNA levels were significantly decreased in breast cancers versus normal breast. This increase in methylation status was accompanied by an increase in DNMT1 and DNMT3B mRNA in advanced stage of human breast cancers and in MCF-7, MDA-MB-361, HCC70, Hs-578T, and MDA-MB-231 breast cancer cells as compared to normal breast specimens and MCF-10-2A, a non-tumorigenic breast cell line, respectively. Our findings highlight the potential for a new epigenetic approach in improving breast cancer therapy by targeting DNMT3A and DNMT3B through miRNA-29b in non-invasive epithelial breast cancer cells. </p>","PeriodicalId":52464,"journal":{"name":"Journal of Carcinogenesis","volume":"12 ","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4103/1477-3163.115720","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carcinogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/1477-3163.115720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 35

Abstract

It is well established that transcriptional silencing of critical tumor-suppressor genes by DNA methylation is a fundamental component in the initiation of breast cancer. However, the involvement of microRNAs (miRNAs) in restoring abnormal DNA methylation patterns in breast cancer is not well understood. Therefore, we investigated whether miRNA-29b, due to its complimentarity to the 3'- untranslated region of DNA methyltransferase 3A (DNMT3A) and DNMT3B, could restore normal DNA methylation patterns in human breast cancers and breast cancer cell lines. We demonstrated that transfection of pre-miRNA-29b into less aggressive MCF-7 cells, but not MDA-MB-231 mesenchymal cells, inhibited cell proliferation, decreased DNMT3A and DNMT3B messenger RNA (mRNA), and decreased promoter methylation status of ADAM23 , CCNA1, CCND2, CDH1, CDKN1C, CDKN2A, HIC1, RASSF1, SLIT2, TNFRSF10D, and TP73 tumor-suppressor genes. Using methylation polymerase chain reaction (PCR) arrays and real-time PCR, we also demonstrated that the methylation status of several critical tumor-suppressor genes increased as stage of breast disease increased, while miRNA-29b mRNA levels were significantly decreased in breast cancers versus normal breast. This increase in methylation status was accompanied by an increase in DNMT1 and DNMT3B mRNA in advanced stage of human breast cancers and in MCF-7, MDA-MB-361, HCC70, Hs-578T, and MDA-MB-231 breast cancer cells as compared to normal breast specimens and MCF-10-2A, a non-tumorigenic breast cell line, respectively. Our findings highlight the potential for a new epigenetic approach in improving breast cancer therapy by targeting DNMT3A and DNMT3B through miRNA-29b in non-invasive epithelial breast cancer cells.

Abstract Image

Abstract Image

Abstract Image

microRNA-29b在人乳腺癌中恢复高甲基化基因启动子的甲基化状态:一种新的表观遗传治疗方法。
众所周知,DNA甲基化导致关键肿瘤抑制基因的转录沉默是乳腺癌发生的一个基本组成部分。然而,microRNAs (miRNAs)在恢复乳腺癌异常DNA甲基化模式中的作用尚不清楚。因此,我们研究了miRNA-29b是否由于其与DNA甲基转移酶3A (DNMT3A)和DNMT3B的3'-非翻译区互补,可以恢复人类乳腺癌和乳腺癌细胞系中正常的DNA甲基化模式。我们证明,将前mirna -29b转染到侵袭性较低的MCF-7细胞,而不是MDA-MB-231间质细胞,可以抑制细胞增殖,降低DNMT3A和DNMT3B信使RNA (mRNA),降低ADAM23、CCNA1、CCND2、CDH1、CDKN1C、CDKN2A、HIC1、RASSF1、SLIT2、TNFRSF10D和TP73肿瘤抑制基因的启动子甲基化状态。利用甲基化聚合酶链反应(PCR)阵列和实时PCR,我们还证实了几个关键肿瘤抑制基因的甲基化状态随着乳腺癌分期的增加而增加,而miRNA-29b mRNA水平在乳腺癌中与正常乳腺相比显着降低。与正常乳腺标本和非致瘤性乳腺细胞系MCF-10-2A相比,晚期乳腺癌细胞和MCF-7、MDA-MB-361、HCC70、Hs-578T和MDA-MB-231细胞中,甲基化状态的增加伴随着DNMT1和DNMT3B mRNA的增加。我们的研究结果强调了通过miRNA-29b靶向非侵袭性上皮性乳腺癌细胞中的DNMT3A和DNMT3B来改善乳腺癌治疗的新表观遗传学方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Carcinogenesis
Journal of Carcinogenesis Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.50
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊介绍: Journal of Carcinogenesis considers manuscripts in many areas of carcinogenesis and Chemoprevention. Primary areas of interest to the journal include: physical and chemical carcinogenesis and mutagenesis; processes influencing or modulating carcinogenesis, such as DNA repair; genetics, nutrition, and metabolism of carcinogens; the mechanism of action of carcinogens and modulating agents; epidemiological studies; and, the formation, detection, identification, and quantification of environmental carcinogens. Manuscripts that contribute to the understanding of cancer prevention are especially encouraged for submission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信