Theerasak Somdee, Michelle Thunders, John Ruck, Isabelle Lys, Margaret Allison, Rachel Page
{"title":"Degradation of [Dha(7)]MC-LR by a Microcystin Degrading Bacterium Isolated from Lake Rotoiti, New Zealand.","authors":"Theerasak Somdee, Michelle Thunders, John Ruck, Isabelle Lys, Margaret Allison, Rachel Page","doi":"10.1155/2013/596429","DOIUrl":null,"url":null,"abstract":"<p><p>For the first time a microcystin-degrading bacterium (NV-3 isolate) has been isolated and characterized from a NZ lake. Cyanobacterial blooms in New Zealand (NZ) waters contain microcystin (MC) hepatotoxins at concentrations which are a risk to animal and human health. Degradation of MCs by naturally occurring bacteria is an attractive bioremediation option for removing MCs from drinking and recreational water sources. The NV-3 isolate was identified by 16S rRNA sequence analysis and found to have 100% nucleotide sequence homology with the Sphingomonas MC-degrading bacterial strain MD-1 from Japan. The NV-3 isolate (concentration of 1.0 × 10(8) CFU/mL) at 30°C degraded a mixture of [Dha(7)]MC-LR and MC-LR (concentration 25 μ g/mL) at a maximum rate of 8.33 μ g/mL/day. The intermediate by-products of [Dha(7)]MC-LR degradation were detected and similar to MC-LR degradation by-products. The presence of three genes (mlrA, mlrB, and mlrC), that encode three enzymes involved in the degradation of MC-LR, were identified in the NV-3 isolate. This study confirmed that degradation of [Dha(7)]MC-LR by the Sphingomonas isolate NV-3 occurred by a similar mechanism previously described for MC-LR by Sphingomonas strain MJ-PV (ACM-3962). This has important implications for potential bioremediation of toxic blooms containing a variety of MCs in NZ waters. </p>","PeriodicalId":14849,"journal":{"name":"ISRN Microbiology","volume":"2013 ","pages":"596429"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/596429","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/596429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
For the first time a microcystin-degrading bacterium (NV-3 isolate) has been isolated and characterized from a NZ lake. Cyanobacterial blooms in New Zealand (NZ) waters contain microcystin (MC) hepatotoxins at concentrations which are a risk to animal and human health. Degradation of MCs by naturally occurring bacteria is an attractive bioremediation option for removing MCs from drinking and recreational water sources. The NV-3 isolate was identified by 16S rRNA sequence analysis and found to have 100% nucleotide sequence homology with the Sphingomonas MC-degrading bacterial strain MD-1 from Japan. The NV-3 isolate (concentration of 1.0 × 10(8) CFU/mL) at 30°C degraded a mixture of [Dha(7)]MC-LR and MC-LR (concentration 25 μ g/mL) at a maximum rate of 8.33 μ g/mL/day. The intermediate by-products of [Dha(7)]MC-LR degradation were detected and similar to MC-LR degradation by-products. The presence of three genes (mlrA, mlrB, and mlrC), that encode three enzymes involved in the degradation of MC-LR, were identified in the NV-3 isolate. This study confirmed that degradation of [Dha(7)]MC-LR by the Sphingomonas isolate NV-3 occurred by a similar mechanism previously described for MC-LR by Sphingomonas strain MJ-PV (ACM-3962). This has important implications for potential bioremediation of toxic blooms containing a variety of MCs in NZ waters.