Zebin Hong , Shiwen Hu , Yang Yang , Ziwei Deng , Xiaomin Li , Tongxu Liu , Fangbai Li
{"title":"The key roles of Fe oxyhydroxides and humic substances during the transformation of exogenous arsenic in a redox-alternating acidic paddy soil","authors":"Zebin Hong , Shiwen Hu , Yang Yang , Ziwei Deng , Xiaomin Li , Tongxu Liu , Fangbai Li","doi":"10.1016/j.watres.2023.120286","DOIUrl":null,"url":null,"abstract":"<div><p>Arsenic (As) from mine wastewater is a significant source for acidic paddy soil pollution, and its mobility can be influenced by alternating redox conditions. However, mechanistic and quantitative insights into the biogeochemical cycles of exogenous As in paddy soil are still lacking. Herein, the variations of As species in paddy soil spiking with As(III) or As(V) were investigated in the process of 40 d of flooding followed 20 d of drainage. During flooding process, available As was immobilized in paddy soil spiking As(III) and the immobilized As was activated in paddy soil spiking As(V) owing to deprotonation. The contributions of Fe oxyhydroxides and humic substances (HS) to As immobilization in paddy soil spiking As(III) were 80.16% and 18.64%, respectively. Whereas the contributions of Fe oxyhydroxides and HS to As activation in paddy soil spiking As(V) were 47.9% and 52.1%, respectively. After entering drainage, available As was mainly immobilized by Fe oxyhydroxides and HS and adsorbed As(III) was oxidized. The contribution of Fe oxyhydroxides to As fixation in paddy soil spiking As(III) and As(V) was 88.82% and 90.26%, respectively, and of HS to As fixation in paddy soil spiking As(III) and As(V) was 11.12% and 8.95%, respectively. Based on the model fitting results, the activation of Fe oxyhydroxides and HS bound As followed with available As(V) reduction were key processes during flooding. This may be because the dispersion of soil particles and release of soil colloids activated the adsorbed As. Immobilization of available As(III) by amorphous Fe oxyhydroxides followed with adsorbed As(III) oxidation were key processes during drainage. This may be ascribe to the occurrence of coprecipitation and As(III) oxidation mediated by reactive oxygen species from Fe(II) oxidation. The results are beneficial for a deeper understanding of As species transformation at the interface of paddy soil-water as well as an estimation pathway for the impacts of key biogeochemical cycles on exogenous As species under a redox-alternating condition.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"242 ","pages":"Article 120286"},"PeriodicalIF":11.4000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135423007224","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
Arsenic (As) from mine wastewater is a significant source for acidic paddy soil pollution, and its mobility can be influenced by alternating redox conditions. However, mechanistic and quantitative insights into the biogeochemical cycles of exogenous As in paddy soil are still lacking. Herein, the variations of As species in paddy soil spiking with As(III) or As(V) were investigated in the process of 40 d of flooding followed 20 d of drainage. During flooding process, available As was immobilized in paddy soil spiking As(III) and the immobilized As was activated in paddy soil spiking As(V) owing to deprotonation. The contributions of Fe oxyhydroxides and humic substances (HS) to As immobilization in paddy soil spiking As(III) were 80.16% and 18.64%, respectively. Whereas the contributions of Fe oxyhydroxides and HS to As activation in paddy soil spiking As(V) were 47.9% and 52.1%, respectively. After entering drainage, available As was mainly immobilized by Fe oxyhydroxides and HS and adsorbed As(III) was oxidized. The contribution of Fe oxyhydroxides to As fixation in paddy soil spiking As(III) and As(V) was 88.82% and 90.26%, respectively, and of HS to As fixation in paddy soil spiking As(III) and As(V) was 11.12% and 8.95%, respectively. Based on the model fitting results, the activation of Fe oxyhydroxides and HS bound As followed with available As(V) reduction were key processes during flooding. This may be because the dispersion of soil particles and release of soil colloids activated the adsorbed As. Immobilization of available As(III) by amorphous Fe oxyhydroxides followed with adsorbed As(III) oxidation were key processes during drainage. This may be ascribe to the occurrence of coprecipitation and As(III) oxidation mediated by reactive oxygen species from Fe(II) oxidation. The results are beneficial for a deeper understanding of As species transformation at the interface of paddy soil-water as well as an estimation pathway for the impacts of key biogeochemical cycles on exogenous As species under a redox-alternating condition.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.