{"title":"Methods for serial analysis of long time series in the study of biological rhythms.","authors":"Antoni Díez-Noguera","doi":"10.1186/1740-3391-11-7","DOIUrl":null,"url":null,"abstract":"<p><p>When one is faced with the analysis of long time series, one often finds that the characteristics of circadian rhythms vary with time throughout the series. To cope with this situation, the whole series can be fragmented into successive sections which are analyzed one after the other, which constitutes a serial analysis. This article discusses serial analysis techniques, beginning with the characteristics that the sections must have and how they can affect the results. After consideration of the effects of some simple filters, different types of serial analysis are discussed systematically according to the variable analyzed or the estimated parameters: scalar magnitudes, angular magnitudes (time or phase), magnitudes related to frequencies (or periods), periodograms, and derived and / or special magnitudes and variables. The use of wavelet analysis and convolutions in long time series is also discussed. In all cases the fundamentals of each method are exposed, jointly with practical considerations and graphic examples. The final section provides information about software available to perform this type of analysis. </p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"11 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1740-3391-11-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
When one is faced with the analysis of long time series, one often finds that the characteristics of circadian rhythms vary with time throughout the series. To cope with this situation, the whole series can be fragmented into successive sections which are analyzed one after the other, which constitutes a serial analysis. This article discusses serial analysis techniques, beginning with the characteristics that the sections must have and how they can affect the results. After consideration of the effects of some simple filters, different types of serial analysis are discussed systematically according to the variable analyzed or the estimated parameters: scalar magnitudes, angular magnitudes (time or phase), magnitudes related to frequencies (or periods), periodograms, and derived and / or special magnitudes and variables. The use of wavelet analysis and convolutions in long time series is also discussed. In all cases the fundamentals of each method are exposed, jointly with practical considerations and graphic examples. The final section provides information about software available to perform this type of analysis.
期刊介绍:
Journal of Circadian Rhythms is an Open Access, peer-reviewed online journal that publishes research articles dealing with circadian and nycthemeral (daily) rhythms in living organisms, including processes associated with photoperiodism and daily torpor. Journal of Circadian Rhythms aims to include both basic and applied research at any level of biological organization (molecular, cellular, organic, organismal, and populational). Studies of daily rhythms in environmental factors that directly affect circadian rhythms are also pertinent to the journal"s mission.