{"title":"Desmosomal adhesion and pemphigus vulgaris: the first half of the story.","authors":"Nicola Cirillo, Badr A Al-Jandan","doi":"10.3109/15419061.2013.763799","DOIUrl":null,"url":null,"abstract":"<p><p>Pemphigus vulgaris (PV) is a paradigm of autoimmune disease affecting intercellular adhesion. The mechanisms that lead to cell-cell detachment (acantholysis) have crucial therapeutic implications and are currently undergoing major scrutiny. The first part of this review focuses on the classical view of the pathogenesis of PV, which is dominated by the cell adhesion molecules of the desmosome, namely desmogleins (Dsgs). Cloning of the DSG3 gene, generation DSG3 knock-out mice and isolation of monoclonal anti-Dsg3 IgG have aided to clarify the pathogenic mechanisms of PV, which are in part dependent on the fate of desmosomal molecules. These include perturbation of the desmosomal network at the transcriptional, translational, and interaction level, kinase activation, proteinase-mediated degradation, and hyper-adhesion. By the use of PV models, translational research has in turn helped shed light into the basic structure, function, and dynamics of assembly of desmosomal cadherins. The combined efforts of basic and applied research has resulted in tremendous advance into the understanding of epidermal adhesion and helped debunk old myths on the supposedly unique role of desmogleins in the mechanisms of cell-cell detachment in PV.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"20 1-2","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061.2013.763799","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061.2013.763799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
Abstract
Pemphigus vulgaris (PV) is a paradigm of autoimmune disease affecting intercellular adhesion. The mechanisms that lead to cell-cell detachment (acantholysis) have crucial therapeutic implications and are currently undergoing major scrutiny. The first part of this review focuses on the classical view of the pathogenesis of PV, which is dominated by the cell adhesion molecules of the desmosome, namely desmogleins (Dsgs). Cloning of the DSG3 gene, generation DSG3 knock-out mice and isolation of monoclonal anti-Dsg3 IgG have aided to clarify the pathogenic mechanisms of PV, which are in part dependent on the fate of desmosomal molecules. These include perturbation of the desmosomal network at the transcriptional, translational, and interaction level, kinase activation, proteinase-mediated degradation, and hyper-adhesion. By the use of PV models, translational research has in turn helped shed light into the basic structure, function, and dynamics of assembly of desmosomal cadherins. The combined efforts of basic and applied research has resulted in tremendous advance into the understanding of epidermal adhesion and helped debunk old myths on the supposedly unique role of desmogleins in the mechanisms of cell-cell detachment in PV.
期刊介绍:
Cessation
Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems.
The journal welcomes submission of original research articles, reviews, short communications and conference reports.