Zahid M Delwar, Ake Siden, Mabel H Cruz, Juan S Yakisich
{"title":"Menadione : sodium orthovanadate combination eliminates and inhibits migration of detached cancer cells.","authors":"Zahid M Delwar, Ake Siden, Mabel H Cruz, Juan S Yakisich","doi":"10.5402/2012/307102","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure of cancer cells to anticancer agents in cultures induces detachment of cells that are usually considered dead. These drug-induced detached cells (D-IDCs) may represent a clinical problem for chemotherapy since they may survive anoikis, enter the circulation, invade other tissues and resume proliferation, creating a metastasis, especially in tissues where the bioavailability of anticancer agents is not enough to eliminate all cancer cells. In this study we evaluated the antiproliferative effect of menadione : sodium orthovanadate (M : SO) combination on A549 lung cancer cells as well as the ability of M : SO to induce cell detachment. In addition, we followed the fate and chemosensitivity of M : SO-induced detached cells. Using transwell chambers, we found that a fraction of the M : SO-induced detached cells were viable and, furthermore, were able to migrate, re-attach, and resume proliferation when re-incubated in drug-free media. The total elimination of A549 detachment-resistant cells and M : SO-induced detached cells were successfully eliminated by equivalent M : SO concentration (17.5 μM : 17.5 μM). Thus, M : SO prevented cell migration. Similar results were obtained on DBTRG.05MG human glioma cells. Our data guarantee further studies to evaluate the in vivo occurrence of D-IDCs, their implications for invasiveness and metastasis and their sensitivity to anticancer drugs.</p>","PeriodicalId":14662,"journal":{"name":"ISRN Pharmacology","volume":"2012 ","pages":"307102"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2012/307102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/8/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure of cancer cells to anticancer agents in cultures induces detachment of cells that are usually considered dead. These drug-induced detached cells (D-IDCs) may represent a clinical problem for chemotherapy since they may survive anoikis, enter the circulation, invade other tissues and resume proliferation, creating a metastasis, especially in tissues where the bioavailability of anticancer agents is not enough to eliminate all cancer cells. In this study we evaluated the antiproliferative effect of menadione : sodium orthovanadate (M : SO) combination on A549 lung cancer cells as well as the ability of M : SO to induce cell detachment. In addition, we followed the fate and chemosensitivity of M : SO-induced detached cells. Using transwell chambers, we found that a fraction of the M : SO-induced detached cells were viable and, furthermore, were able to migrate, re-attach, and resume proliferation when re-incubated in drug-free media. The total elimination of A549 detachment-resistant cells and M : SO-induced detached cells were successfully eliminated by equivalent M : SO concentration (17.5 μM : 17.5 μM). Thus, M : SO prevented cell migration. Similar results were obtained on DBTRG.05MG human glioma cells. Our data guarantee further studies to evaluate the in vivo occurrence of D-IDCs, their implications for invasiveness and metastasis and their sensitivity to anticancer drugs.