Thisara Jayawickrama Withanage , Rami Krieger , Ellen Wachtel , Guy Patchornik
{"title":"Efficient separation of IgG from IgM antibodies via conjugated surfactant micelles","authors":"Thisara Jayawickrama Withanage , Rami Krieger , Ellen Wachtel , Guy Patchornik","doi":"10.1016/j.jchromb.2023.123805","DOIUrl":null,"url":null,"abstract":"<div><p>Immunoglobulin-G (IgG) (∼150 kDa) antibodies confer longer term immunity against bacterial or viral infections than the heavier IgM’s (∼900 kDa), which are generally detectable in blood circulation in response to more recently acquired infections. There may be, however, a time overlap, which is problematic for diagnostic purposes, in the interests of which it is essential to separate IgM's from IgG’s. We describe a purification platform, functioning at pH 6.5, containing Tween-20, or Brij-O20, non-ionic detergent micelles, mixed with the sugar-rich detergent dodecyl maltoside (DDM), amino acid monomer tyrosine (Tyr), and conjugated by the amphiphilic complex [(bathophenanthroline)<sub>3</sub>: Fe<sup>2+</sup>]. Using conjugated Brij-O20 micelles, with input molar ratio IgG: IgM 9:1, IgG is recovered at 10 °C with 85–90% yield, (by SDS-PAGE densitometry) and ≥95% purity (also by SDS-PAGE), while IgM's are recovered at lower yields (28–34%) and contain small amounts of co-extracted IgG's. Addition of <em>E. coli</em> lysate as an artificial contamination background does not reduce the yield or purity of the recovered IgG. Tween-20/DDM/Tyr micelles lead to IgG purity ≥95% similar to that of Brij-O20, but with lower process yields (64–70%, by densitometry). Chromatographic separation with Protein A or Protein G resins leads to yields comparable to those obtained with Brij-O20 micelles, but with lower purity.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1226 ","pages":"Article 123805"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023223002155","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoglobulin-G (IgG) (∼150 kDa) antibodies confer longer term immunity against bacterial or viral infections than the heavier IgM’s (∼900 kDa), which are generally detectable in blood circulation in response to more recently acquired infections. There may be, however, a time overlap, which is problematic for diagnostic purposes, in the interests of which it is essential to separate IgM's from IgG’s. We describe a purification platform, functioning at pH 6.5, containing Tween-20, or Brij-O20, non-ionic detergent micelles, mixed with the sugar-rich detergent dodecyl maltoside (DDM), amino acid monomer tyrosine (Tyr), and conjugated by the amphiphilic complex [(bathophenanthroline)3: Fe2+]. Using conjugated Brij-O20 micelles, with input molar ratio IgG: IgM 9:1, IgG is recovered at 10 °C with 85–90% yield, (by SDS-PAGE densitometry) and ≥95% purity (also by SDS-PAGE), while IgM's are recovered at lower yields (28–34%) and contain small amounts of co-extracted IgG's. Addition of E. coli lysate as an artificial contamination background does not reduce the yield or purity of the recovered IgG. Tween-20/DDM/Tyr micelles lead to IgG purity ≥95% similar to that of Brij-O20, but with lower process yields (64–70%, by densitometry). Chromatographic separation with Protein A or Protein G resins leads to yields comparable to those obtained with Brij-O20 micelles, but with lower purity.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.