{"title":"Single atom doping in 2D layered MoS2 from a periodic table perspective","authors":"Saeed Sovizi, Robert Szoszkiewicz","doi":"10.1016/j.surfrep.2022.100567","DOIUrl":null,"url":null,"abstract":"<div><p><span>Molybdenum Disulfide (MoS</span><sub>2</sub><span>) is a well-known transition metal dichalcogenide with a hexagonal structure arrangement analogous to graphene. Two dimensional (2D) MoS</span><sub>2</sub><span><span> has attracted wide attention in various applications such as energy storage, catalysis, sensing, energy conversion and optoelectronics<span> due to its unique properties including tunable bandgap, substantial carrier mobility, outstanding </span></span>mechanical strength and dangling-bond free basal surface. Moreover, MoS</span><sub>2</sub> has shown an excellent capability to be a host for foreign atoms which tune its physicochemical properties. Herein, currently known structural changes in the MoS<sub>2</sub><span> crystals introduced by various single atom dopants<span> coming from all over the chemical table of elements are reviewed. Accompanying electrical, optical and magnetic properties of such structures are discussed in detail. Potential applications of the doped MoS</span></span><sub>2</sub><span><span> are introduced briefly as well. The review concentrates on the recent state-of-the-art results obtained mostly by the high resolution scanning transmission electron microscopy (STEM), such as high angle annular dark field (HAADF) imaging as well as </span>scanning probe microscopy<span> (SPM) such as scanning tunneling microscopy (STM). These techniques have been used to decipher dopant positions and other sub-atomic structural changes introduced to the MoS</span></span><sub>2</sub> structure by isolated dopants.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572922000164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 12
Abstract
Molybdenum Disulfide (MoS2) is a well-known transition metal dichalcogenide with a hexagonal structure arrangement analogous to graphene. Two dimensional (2D) MoS2 has attracted wide attention in various applications such as energy storage, catalysis, sensing, energy conversion and optoelectronics due to its unique properties including tunable bandgap, substantial carrier mobility, outstanding mechanical strength and dangling-bond free basal surface. Moreover, MoS2 has shown an excellent capability to be a host for foreign atoms which tune its physicochemical properties. Herein, currently known structural changes in the MoS2 crystals introduced by various single atom dopants coming from all over the chemical table of elements are reviewed. Accompanying electrical, optical and magnetic properties of such structures are discussed in detail. Potential applications of the doped MoS2 are introduced briefly as well. The review concentrates on the recent state-of-the-art results obtained mostly by the high resolution scanning transmission electron microscopy (STEM), such as high angle annular dark field (HAADF) imaging as well as scanning probe microscopy (SPM) such as scanning tunneling microscopy (STM). These techniques have been used to decipher dopant positions and other sub-atomic structural changes introduced to the MoS2 structure by isolated dopants.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.