Single atom doping in 2D layered MoS2 from a periodic table perspective

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL
Saeed Sovizi, Robert Szoszkiewicz
{"title":"Single atom doping in 2D layered MoS2 from a periodic table perspective","authors":"Saeed Sovizi,&nbsp;Robert Szoszkiewicz","doi":"10.1016/j.surfrep.2022.100567","DOIUrl":null,"url":null,"abstract":"<div><p><span>Molybdenum Disulfide (MoS</span><sub>2</sub><span>) is a well-known transition metal dichalcogenide with a hexagonal structure arrangement analogous to graphene. Two dimensional (2D) MoS</span><sub>2</sub><span><span> has attracted wide attention in various applications such as energy storage, catalysis, sensing, energy conversion and optoelectronics<span> due to its unique properties including tunable bandgap, substantial carrier mobility, outstanding </span></span>mechanical strength and dangling-bond free basal surface. Moreover, MoS</span><sub>2</sub> has shown an excellent capability to be a host for foreign atoms which tune its physicochemical properties. Herein, currently known structural changes in the MoS<sub>2</sub><span> crystals introduced by various single atom dopants<span> coming from all over the chemical table of elements are reviewed. Accompanying electrical, optical and magnetic properties of such structures are discussed in detail. Potential applications of the doped MoS</span></span><sub>2</sub><span><span> are introduced briefly as well. The review concentrates on the recent state-of-the-art results obtained mostly by the high resolution scanning transmission electron microscopy (STEM), such as high angle annular dark field (HAADF) imaging as well as </span>scanning probe microscopy<span> (SPM) such as scanning tunneling microscopy (STM). These techniques have been used to decipher dopant positions and other sub-atomic structural changes introduced to the MoS</span></span><sub>2</sub> structure by isolated dopants.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572922000164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 12

Abstract

Molybdenum Disulfide (MoS2) is a well-known transition metal dichalcogenide with a hexagonal structure arrangement analogous to graphene. Two dimensional (2D) MoS2 has attracted wide attention in various applications such as energy storage, catalysis, sensing, energy conversion and optoelectronics due to its unique properties including tunable bandgap, substantial carrier mobility, outstanding mechanical strength and dangling-bond free basal surface. Moreover, MoS2 has shown an excellent capability to be a host for foreign atoms which tune its physicochemical properties. Herein, currently known structural changes in the MoS2 crystals introduced by various single atom dopants coming from all over the chemical table of elements are reviewed. Accompanying electrical, optical and magnetic properties of such structures are discussed in detail. Potential applications of the doped MoS2 are introduced briefly as well. The review concentrates on the recent state-of-the-art results obtained mostly by the high resolution scanning transmission electron microscopy (STEM), such as high angle annular dark field (HAADF) imaging as well as scanning probe microscopy (SPM) such as scanning tunneling microscopy (STM). These techniques have been used to decipher dopant positions and other sub-atomic structural changes introduced to the MoS2 structure by isolated dopants.

从元素周期表的角度研究二维层状二硫化钼的单原子掺杂
二硫化钼(MoS2)是一种众所周知的过渡金属二硫化物,具有类似石墨烯的六方结构排列。二维二硫化钼具有带隙可调、载流子迁移率高、机械强度强、基面无悬垂键等独特性能,在储能、催化、传感、能量转换和光电子等领域受到广泛关注。此外,二硫化钼表现出作为外来原子宿主的优异能力,从而调整其物理化学性质。本文综述了目前已知的由元素化学表中各种单原子掺杂剂引起的二硫化钼晶体结构变化。详细讨论了这种结构的电学、光学和磁学性质。简要介绍了掺杂二硫化钼的潜在应用。本文主要综述了高分辨率扫描透射电子显微镜(STEM),如高角度环形暗场成像(HAADF),以及扫描探针显微镜(SPM),如扫描隧道显微镜(STM)所获得的最新研究成果。这些技术已经被用来破译掺杂剂的位置和其他亚原子结构的变化引入到二硫化钼的结构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信