Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhiguang Zhu , Fern Lan Ng , Hang Li Seet , Wenjun Lu , Christian H. Liebscher , Ziyuan Rao , Dierk Raabe , Sharon Mui Ling Nai
{"title":"Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation","authors":"Zhiguang Zhu ,&nbsp;Fern Lan Ng ,&nbsp;Hang Li Seet ,&nbsp;Wenjun Lu ,&nbsp;Christian H. Liebscher ,&nbsp;Ziyuan Rao ,&nbsp;Dierk Raabe ,&nbsp;Sharon Mui Ling Nai","doi":"10.1016/j.mattod.2021.11.019","DOIUrl":null,"url":null,"abstract":"<div><p><span>Achieving high mechanical strength<span> and ductility in age-hardenable Al7000 series (Al–Zn–Mg) alloys fabricated by selective laser melting<span> (SLM) remains challenging. Here, we show that crack-free AlZnMgCuScZr alloys with an unprecedented strength–ductility synergy can be fabricated via SLM and heat treatment. The as-built samples had an architectured microstructure consisting of a multimodal grain structure and a hierarchical phase morphology. It consisted of primary Al</span></span></span><sub>3</sub>(Sc<em><sub>x</sub></em>,Zr<sub>1−</sub><em><sub>x</sub></em><span>) particles which act as inoculants for ultrafine grains, preventing crack formation<span>. The metastable Mg-, Zn-, and Cu-rich icosahedral quasicrystals (</span></span><em>I</em><span>-phase) ubiquitously dispersed inside the grains and aligned as a filigree skeleton along the grain boundaries. The heat treated SLM-produced AlZnMgCuScZr alloy exhibited tunable mechanical behaviors through trade-off among the hierarchical features, including the dual-nanoprecipitation, viz, η′ phase, and secondary (Al,Zn)</span><sub>3</sub>(Sc<sub>9</sub><span>Zr), and grain coarsening. Less coarsening of grains and (Al,Zn)</span><sub>3</sub>(Sc<sub>9</sub>Zr) particles, due to a reduced solution treatment temperature and time, could overwhelm the more complete dissolution of <em>I</em><span>-phase (triggering more η′ phase), resulting in higher yield strength. Optimal combination of the hierarchical features yields the highest yield strength (∼647 MPa) among all reported SLM-produced Al alloys<span> to date with appreciable ductility (∼11.6%). The successful fabrication of high-strength Al7000 series alloys<span> with an adjustable hierarchical microstructure paves the way for designing and fine-tuning SLM-produced aluminum engineering components exposed to high mechanical loads.</span></span></span></p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":null,"pages":null},"PeriodicalIF":21.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702121004065","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 80

Abstract

Achieving high mechanical strength and ductility in age-hardenable Al7000 series (Al–Zn–Mg) alloys fabricated by selective laser melting (SLM) remains challenging. Here, we show that crack-free AlZnMgCuScZr alloys with an unprecedented strength–ductility synergy can be fabricated via SLM and heat treatment. The as-built samples had an architectured microstructure consisting of a multimodal grain structure and a hierarchical phase morphology. It consisted of primary Al3(Scx,Zr1−x) particles which act as inoculants for ultrafine grains, preventing crack formation. The metastable Mg-, Zn-, and Cu-rich icosahedral quasicrystals (I-phase) ubiquitously dispersed inside the grains and aligned as a filigree skeleton along the grain boundaries. The heat treated SLM-produced AlZnMgCuScZr alloy exhibited tunable mechanical behaviors through trade-off among the hierarchical features, including the dual-nanoprecipitation, viz, η′ phase, and secondary (Al,Zn)3(Sc9Zr), and grain coarsening. Less coarsening of grains and (Al,Zn)3(Sc9Zr) particles, due to a reduced solution treatment temperature and time, could overwhelm the more complete dissolution of I-phase (triggering more η′ phase), resulting in higher yield strength. Optimal combination of the hierarchical features yields the highest yield strength (∼647 MPa) among all reported SLM-produced Al alloys to date with appreciable ductility (∼11.6%). The successful fabrication of high-strength Al7000 series alloys with an adjustable hierarchical microstructure paves the way for designing and fine-tuning SLM-produced aluminum engineering components exposed to high mechanical loads.

Abstract Image

选择性激光熔化AlZnMgCuScZr合金优异的机械性能,通过可调的分层微观结构和双纳米沉淀实现
在选择性激光熔化(SLM)制备的可时效硬化Al7000系列(Al-Zn-Mg)合金中实现高机械强度和延展性仍然是一个挑战。在这里,我们证明了通过SLM和热处理可以制备出具有前所未有的强度-塑性协同作用的无裂纹AlZnMgCuScZr合金。构建的样品具有由多模态晶粒结构和分层相形貌组成的体系结构微观结构。它由初生Al3(Scx,Zr1−x)颗粒组成,作为超细晶粒的孕育剂,防止裂纹的形成。亚稳的富镁、富锌和富铜二十面体准晶(i相)普遍分布在晶粒内,并沿晶界排列成丝状骨架。经过热处理的slm制备的AlZnMgCuScZr合金通过权衡双纳米析出(即η′相、二次(Al,Zn)3(Sc9Zr))和晶粒粗化等层次特征,表现出可调节的力学行为。由于降低了固溶处理温度和时间,晶粒和(Al,Zn)3(Sc9Zr)颗粒的粗化程度较低,可以抑制i相的完全溶解(引发更多的η′相),从而提高屈服强度。分层特征的最佳组合在迄今为止所有报道的slm生产的铝合金中产生最高的屈服强度(~ 647 MPa),具有可观的延展性(~ 11.6%)。高强度Al7000系列合金的成功制造,具有可调节的分层微观结构,为slm生产的高机械负荷铝工程部件的设计和微调铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信