Ying Xu , Jun-Jie Duan , Zhen-Yu Yi , Ke-Xin Zhang , Ting Chen , Dong Wang
{"title":"Chirality of molecular nanostructures on surfaces via molecular assembly and reaction: manifestation and control","authors":"Ying Xu , Jun-Jie Duan , Zhen-Yu Yi , Ke-Xin Zhang , Ting Chen , Dong Wang","doi":"10.1016/j.surfrep.2021.100531","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The formation of chiral nanostructures via molecular assembly and reaction on </span>solid surfaces<span><span> is a ubiquitous surface process due to the symmetry-breaking at 2D surface. Studying chirality during the adsorption, assembly, and reaction of molecules on 2D solid surfaces at molecular level not only sheds deep insights into the enantioselective </span>heterogeneous catalysis, chiral recognition, origin and evolution of chirality, and many important </span></span>physical chemistry<span><span> processes but also provides an important strategy to create chiral nanostructures. Here, we give a survey of recent advances in chiral expression and control in molecular assemblies and reactions on surfaces. We firstly give a brief introduction to the general concepts of chiral molecular nanostructures on surfaces. And then we focus on the induction and control of chirality expressed in molecular assemblies. The recent developments in the control strategies such as chiral co-adsorber, chiral auxiliary, chiral solvent, chiral templated surfaces, as well as the underlying mechanism to achieve the chiral induction and amplification, are reviewed. After that, we review the studies of chirality expressed in on-surface synthesis which has been proved to be a promising strategy to fabricate covalently bonded low-dimensional nanostructures and materials. In this respect, we introduce the chiral expression in the intramolecular and intermolecular coupling reactions on surfaces. In addition, we survey the methods to steer the </span>stereoselectivity<span><span> of on-surface reactions including the design of precursor structure, steric hindrance effect, substrate, </span>kinetic parameters et al. Finally, the future outlook in this field is discussed.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2021.100531","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572921000169","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 20
Abstract
The formation of chiral nanostructures via molecular assembly and reaction on solid surfaces is a ubiquitous surface process due to the symmetry-breaking at 2D surface. Studying chirality during the adsorption, assembly, and reaction of molecules on 2D solid surfaces at molecular level not only sheds deep insights into the enantioselective heterogeneous catalysis, chiral recognition, origin and evolution of chirality, and many important physical chemistry processes but also provides an important strategy to create chiral nanostructures. Here, we give a survey of recent advances in chiral expression and control in molecular assemblies and reactions on surfaces. We firstly give a brief introduction to the general concepts of chiral molecular nanostructures on surfaces. And then we focus on the induction and control of chirality expressed in molecular assemblies. The recent developments in the control strategies such as chiral co-adsorber, chiral auxiliary, chiral solvent, chiral templated surfaces, as well as the underlying mechanism to achieve the chiral induction and amplification, are reviewed. After that, we review the studies of chirality expressed in on-surface synthesis which has been proved to be a promising strategy to fabricate covalently bonded low-dimensional nanostructures and materials. In this respect, we introduce the chiral expression in the intramolecular and intermolecular coupling reactions on surfaces. In addition, we survey the methods to steer the stereoselectivity of on-surface reactions including the design of precursor structure, steric hindrance effect, substrate, kinetic parameters et al. Finally, the future outlook in this field is discussed.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.