Semantic image retrieval in magnetic resonance brain volumes.

Azhar Quddus, Otman Basir
{"title":"Semantic image retrieval in magnetic resonance brain volumes.","authors":"Azhar Quddus,&nbsp;Otman Basir","doi":"10.1109/TITB.2012.2189439","DOIUrl":null,"url":null,"abstract":"<p><p>Practitioners in the area of neurology often need to retrieve multimodal magnetic resonance (MR) images of the brain to study disease progression and to correlate observations across multiple subjects. In this paper, a novel technique for retrieving 2-D MR images (slices) in 3-D brain volumes is proposed. Given a 2-D MR query slice, the technique identifies the 3-D volume among multiple subjects in the database, associates the query slice with a specific region of the brain, and retrieves the matching slice within this region in the identified volumes. The proposed technique is capable of retrieving an image in multimodal and noisy scenarios. In this study, support vector machines (SVM) are used for identifying 3-D MR volume and for performing semantic classification of the human brain into various semantic regions. In order to achieve reliable image retrieval performance in the presence of misalignments, an image registration-based retrieval framework is developed. The proposed retrieval technique is tested on various modalities. The test results reveal superior robustness performance with respect to accuracy, speed, and multimodality.</p>","PeriodicalId":55008,"journal":{"name":"IEEE Transactions on Information Technology in Biomedicine","volume":"16 3","pages":"348-55"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TITB.2012.2189439","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Technology in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TITB.2012.2189439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Practitioners in the area of neurology often need to retrieve multimodal magnetic resonance (MR) images of the brain to study disease progression and to correlate observations across multiple subjects. In this paper, a novel technique for retrieving 2-D MR images (slices) in 3-D brain volumes is proposed. Given a 2-D MR query slice, the technique identifies the 3-D volume among multiple subjects in the database, associates the query slice with a specific region of the brain, and retrieves the matching slice within this region in the identified volumes. The proposed technique is capable of retrieving an image in multimodal and noisy scenarios. In this study, support vector machines (SVM) are used for identifying 3-D MR volume and for performing semantic classification of the human brain into various semantic regions. In order to achieve reliable image retrieval performance in the presence of misalignments, an image registration-based retrieval framework is developed. The proposed retrieval technique is tested on various modalities. The test results reveal superior robustness performance with respect to accuracy, speed, and multimodality.

磁共振脑容量语义图像检索。
神经病学领域的从业人员经常需要检索大脑的多模态磁共振(MR)图像来研究疾病进展,并将多个受试者的观察结果联系起来。本文提出了一种在三维脑体积中检索二维磁共振图像(切片)的新技术。给定一个二维磁共振查询切片,该技术在数据库中的多个主题中识别三维体,将查询切片与大脑的特定区域关联,并在识别的体积中检索该区域内的匹配切片。该技术能够在多模态和噪声环境下检索图像。在本研究中,支持向量机(SVM)用于识别三维MR体积,并对人脑进行不同语义区域的语义分类。为了在不对齐的情况下获得可靠的图像检索性能,提出了一种基于配准的图像检索框架。提出的检索技术在各种模式下进行了测试。测试结果显示,优越的鲁棒性性能方面的准确性,速度和多模态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Technology in Biomedicine
IEEE Transactions on Information Technology in Biomedicine 工程技术-计算机:跨学科应用
自引率
0.00%
发文量
1
审稿时长
4.8 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信