The phenylpropanoid pathway in Arabidopsis.

The arabidopsis book Pub Date : 2011-01-01 Epub Date: 2011-12-06 DOI:10.1199/tab.0152
Christopher M Fraser, Clint Chapple
{"title":"The phenylpropanoid pathway in Arabidopsis.","authors":"Christopher M Fraser,&nbsp;Clint Chapple","doi":"10.1199/tab.0152","DOIUrl":null,"url":null,"abstract":"<p><p>The phenylpropanoid pathway serves as a rich source of metabolites in plants, being required for the biosynthesis of lignin, and serving as a starting point for the production of many other important compounds, such as the flavonoids, coumarins, and lignans. In spite of the fact that the phenylpropanoids and their derivatives are sometimes classified as secondary metabolites, their relevance to plant survival has been made clear via the study of Arabidopsis and other plant species. As a model system, Arabidopsis has helped to elucidate many details of the phenylpropanoid pathway, its enzymes and intermediates, and the interconnectedness of the pathway with plant metabolism as a whole. These advances in our understanding have been made possible in large part by the relative ease with which mutations can be generated, identified, and studied in Arabidopsis. Herein, we provide an overview of the research progress that has been made in recent years, emphasizing both the genes (and gene families) associated with the phenylpropanoid pathway in Arabidopsis, and the end products that have contributed to the identification of many mutants deficient in the phenylpropanoid metabolism: the sinapate esters.</p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"9 ","pages":"e0152"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0152","citationCount":"512","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The arabidopsis book","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1199/tab.0152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/12/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 512

Abstract

The phenylpropanoid pathway serves as a rich source of metabolites in plants, being required for the biosynthesis of lignin, and serving as a starting point for the production of many other important compounds, such as the flavonoids, coumarins, and lignans. In spite of the fact that the phenylpropanoids and their derivatives are sometimes classified as secondary metabolites, their relevance to plant survival has been made clear via the study of Arabidopsis and other plant species. As a model system, Arabidopsis has helped to elucidate many details of the phenylpropanoid pathway, its enzymes and intermediates, and the interconnectedness of the pathway with plant metabolism as a whole. These advances in our understanding have been made possible in large part by the relative ease with which mutations can be generated, identified, and studied in Arabidopsis. Herein, we provide an overview of the research progress that has been made in recent years, emphasizing both the genes (and gene families) associated with the phenylpropanoid pathway in Arabidopsis, and the end products that have contributed to the identification of many mutants deficient in the phenylpropanoid metabolism: the sinapate esters.

Abstract Image

拟南芥中的苯丙素途径。
苯丙素途径是植物代谢产物的丰富来源,是木质素生物合成所必需的,也是许多其他重要化合物(如类黄酮、香豆素和木脂素)生产的起点。尽管苯丙素及其衍生物有时被归类为次生代谢物,但它们与植物存活的相关性已通过对拟南芥和其他植物物种的研究得到明确。作为一个模型系统,拟南芥已经帮助阐明了苯丙素途径、其酶和中间体的许多细节,以及该途径与植物整体代谢的相互联系。我们在理解上取得的这些进步在很大程度上是由于在拟南芥中相对容易地产生、识别和研究突变。在此,我们对近年来的研究进展进行了概述,重点介绍了拟南芥中与苯丙氨酸途径相关的基因(和基因家族),以及有助于鉴定许多苯丙氨酸代谢缺陷突变体的最终产物:新果酸酯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信