Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

Baopu Li, Max Q-H Meng
{"title":"Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.","authors":"Baopu Li,&nbsp;Max Q-H Meng","doi":"10.1109/TITB.2012.2185807","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.</p>","PeriodicalId":55008,"journal":{"name":"IEEE Transactions on Information Technology in Biomedicine","volume":"16 3","pages":"323-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TITB.2012.2185807","citationCount":"174","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Technology in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TITB.2012.2185807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 174

Abstract

Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

基于纹理特征和svm特征选择的无线胶囊内窥镜图像肿瘤识别。
消化道肿瘤是一种常见疾病,无线胶囊内镜(WCE)是一种较新的消化道疾病,尤其是小肠疾病的检查技术。本文研究了基于WCE图像的肿瘤自动识别问题。提出了将均匀局部二值模式与小波相结合的候选颜色纹理特征来表征WCE图像。所提出的特征不受光照变化的影响,描述了WCE图像的多分辨率特征。基于支持向量机的连续前向浮动选择和递归特征消除两种特征选择方法进一步对所提出的特征进行细化,以提高检测精度。大量的实验验证了所提出的计算机辅助诊断系统对WCE图像的肿瘤识别准确率达到了92.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Technology in Biomedicine
IEEE Transactions on Information Technology in Biomedicine 工程技术-计算机:跨学科应用
自引率
0.00%
发文量
1
审稿时长
4.8 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信