Leor C Zellner, Kathleen M Brundage, Dawn D Hunter, Richard D Dey
{"title":"Early Postnatal Ozone Exposure Alters Rat Nodose and Jugular Sensory Neuron Development.","authors":"Leor C Zellner, Kathleen M Brundage, Dawn D Hunter, Richard D Dey","doi":"10.1080/02772248.2011.610882","DOIUrl":null,"url":null,"abstract":"<p><p>Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O(3)). Airway neurons can mediate airway inflammation through release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O(3) exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O(3) exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O(3) (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O(3) exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O(3) exposure significantly alters sensory neuron development.</p>","PeriodicalId":23122,"journal":{"name":"Toxicological and Environmental Chemistry","volume":"93 10","pages":"2055-2071"},"PeriodicalIF":1.1000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/02772248.2011.610882","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological and Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02772248.2011.610882","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O(3)). Airway neurons can mediate airway inflammation through release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O(3) exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O(3) exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O(3) (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O(3) exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O(3) exposure significantly alters sensory neuron development.
期刊介绍:
The journal is interdisciplinary in outlook, and manuscripts published in it cover all relevant areas: • inorganic chemistry – trace elements in food and the environment, metal complexes and chelates; • organic chemistry – environmental fate, chemical reactions, metabolites and secondary products, synthesis of standards and labelled materials; • physical chemistry – photochemistry, radiochemistry; • environmental chemistry – sources, fate, and sinks of xenochemicals, environmental partitioning and transport, degradation and deposition; • analytical chemistry – development and optimisation of analytical methods, instrumental and methodological advances, miniaturisation and automation; • biological chemistry – pharmacology and toxicology, uptake, metabolism, disposition of xenochemicals, structure-activity relationships, modes of action, ecotoxicological testing.