Zahra Shayan, Seyyed Mohammad Taghi Ayatollahi, Najaf Zare
{"title":"A parametric method for cumulative incidence modeling with a new four-parameter log-logistic distribution.","authors":"Zahra Shayan, Seyyed Mohammad Taghi Ayatollahi, Najaf Zare","doi":"10.1186/1742-4682-8-43","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Competing risks, which are particularly encountered in medical studies, are an important topic of concern, and appropriate analyses must be used for these data. One feature of competing risks is the cumulative incidence function, which is modeled in most studies using non- or semi-parametric methods. However, parametric models are required in some cases to ensure maximum efficiency, and to fit various shapes of hazard function.</p><p><strong>Methods: </strong>We have used the stable distributions family of Hougaard to propose a new four-parameter distribution by extending a two-parameter log-logistic distribution, and carried out a simulation study to compare the cumulative incidence estimated with this distribution with the estimates obtained using a non-parametric method. To test our approach in a practical application, the model was applied to a set of real data on fertility history.</p><p><strong>Conclusions: </strong>The results of simulation studies showed that the estimated cumulative incidence function was more accurate than non-parametric estimates in some settings. Analyses of real data indicated that the proposed distribution showed a much better fit to the data than the other distributions tested. Therefore, the new distribution is recommended for practical applications to parameterize the cumulative incidence function in competing risk settings.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":" ","pages":"43"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-4682-8-43","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-4682-8-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16
Abstract
Background: Competing risks, which are particularly encountered in medical studies, are an important topic of concern, and appropriate analyses must be used for these data. One feature of competing risks is the cumulative incidence function, which is modeled in most studies using non- or semi-parametric methods. However, parametric models are required in some cases to ensure maximum efficiency, and to fit various shapes of hazard function.
Methods: We have used the stable distributions family of Hougaard to propose a new four-parameter distribution by extending a two-parameter log-logistic distribution, and carried out a simulation study to compare the cumulative incidence estimated with this distribution with the estimates obtained using a non-parametric method. To test our approach in a practical application, the model was applied to a set of real data on fertility history.
Conclusions: The results of simulation studies showed that the estimated cumulative incidence function was more accurate than non-parametric estimates in some settings. Analyses of real data indicated that the proposed distribution showed a much better fit to the data than the other distributions tested. Therefore, the new distribution is recommended for practical applications to parameterize the cumulative incidence function in competing risk settings.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.