Vladas Skakauskas, Pranas Katauskis, Alex Skvortsov
{"title":"A reaction-diffusion model of the receptor-toxin-antibody interaction.","authors":"Vladas Skakauskas, Pranas Katauskis, Alex Skvortsov","doi":"10.1186/1742-4682-8-32","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It was recently shown that the treatment effect of an antibody can be described by a consolidated parameter which includes the reaction rates of the receptor-toxin-antibody kinetics and the relative concentration of reacting species. As a result, any given value of this parameter determines an associated range of antibody kinetic properties and its relative concentration in order to achieve a desirable therapeutic effect. In the current study we generalize the existing kinetic model by explicitly taking into account the diffusion fluxes of the species.</p><p><strong>Results: </strong>A refined model of receptor-toxin-antibody (RTA) interaction is studied numerically. The protective properties of an antibody against a given toxin are evaluated for a spherical cell placed into a toxin-antibody solution. The selection of parameters for numerical simulation approximately corresponds to the practically relevant values reported in the literature with the significant ranges in variation to allow demonstration of different regimes of intracellular transport.</p><p><strong>Conclusions: </strong>The proposed refinement of the RTA model may become important for the consistent evaluation of protective potential of an antibody and for the estimation of the time period during which the application of this antibody becomes the most effective. It can be a useful tool for in vitro selection of potential protective antibodies for progression to in vivo evaluation.</p>","PeriodicalId":51195,"journal":{"name":"Theoretical Biology and Medical Modelling","volume":" ","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1742-4682-8-32","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology and Medical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1742-4682-8-32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12
Abstract
Background: It was recently shown that the treatment effect of an antibody can be described by a consolidated parameter which includes the reaction rates of the receptor-toxin-antibody kinetics and the relative concentration of reacting species. As a result, any given value of this parameter determines an associated range of antibody kinetic properties and its relative concentration in order to achieve a desirable therapeutic effect. In the current study we generalize the existing kinetic model by explicitly taking into account the diffusion fluxes of the species.
Results: A refined model of receptor-toxin-antibody (RTA) interaction is studied numerically. The protective properties of an antibody against a given toxin are evaluated for a spherical cell placed into a toxin-antibody solution. The selection of parameters for numerical simulation approximately corresponds to the practically relevant values reported in the literature with the significant ranges in variation to allow demonstration of different regimes of intracellular transport.
Conclusions: The proposed refinement of the RTA model may become important for the consistent evaluation of protective potential of an antibody and for the estimation of the time period during which the application of this antibody becomes the most effective. It can be a useful tool for in vitro selection of potential protective antibodies for progression to in vivo evaluation.
期刊介绍:
Theoretical Biology and Medical Modelling is an open access peer-reviewed journal adopting a broad definition of "biology" and focusing on theoretical ideas and models associated with developments in biology and medicine. Mathematicians, biologists and clinicians of various specialisms, philosophers and historians of science are all contributing to the emergence of novel concepts in an age of systems biology, bioinformatics and computer modelling. This is the field in which Theoretical Biology and Medical Modelling operates. We welcome submissions that are technically sound and offering either improved understanding in biology and medicine or progress in theory or method.