Angelo Sassaroli, Feng Zheng, Michele Pierro, Peter R Bergethon, Sergio Fantini
{"title":"PHASE DIFFERENCE BETWEEN LOW-FREQUENCY OSCILLATIONS OF CEREBRAL DEOXY- AND OXY-HEMOGLOBIN CONCENTRATIONS DURING A MENTAL TASK.","authors":"Angelo Sassaroli, Feng Zheng, Michele Pierro, Peter R Bergethon, Sergio Fantini","doi":"10.1142/S1793545811001332","DOIUrl":null,"url":null,"abstract":"<p><p>Hemodynamic low-frequency (~0.1 Hz) spontaneous oscillations as detected in the brain by near-infrared spectroscopy have potential applications in the study of brain activation, cerebral autoregulation, and functional connectivity. In this work, we have investigated the phase lag between oscillations of cerebral deoxy- and oxy-hemoglobin concentrations in the frequency range 0.05-0.10 Hz in a human subject during a mental workload task. We have obtained a measure of such phase lag using two different methods: (1) phase synchronization analysis as used in the theory of chaotic oscillators and (2) a novel cross-correlation phasor approach. The two methods yielded comparable initial results of a larger phase lag between low-frequency oscillations of deoxy- and oxy-hemoglobin concentrations during mental workload with respect to a control, rest condition.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"4 2","pages":"151-158"},"PeriodicalIF":2.3000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545811001332","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Optical Health Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S1793545811001332","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 10
Abstract
Hemodynamic low-frequency (~0.1 Hz) spontaneous oscillations as detected in the brain by near-infrared spectroscopy have potential applications in the study of brain activation, cerebral autoregulation, and functional connectivity. In this work, we have investigated the phase lag between oscillations of cerebral deoxy- and oxy-hemoglobin concentrations in the frequency range 0.05-0.10 Hz in a human subject during a mental workload task. We have obtained a measure of such phase lag using two different methods: (1) phase synchronization analysis as used in the theory of chaotic oscillators and (2) a novel cross-correlation phasor approach. The two methods yielded comparable initial results of a larger phase lag between low-frequency oscillations of deoxy- and oxy-hemoglobin concentrations during mental workload with respect to a control, rest condition.
期刊介绍:
JIOHS serves as an international forum for the publication of the latest developments in all areas of photonics in biology and medicine. JIOHS will consider for publication original papers in all disciplines of photonics in biology and medicine, including but not limited to:
-Photonic therapeutics and diagnostics-
Optical clinical technologies and systems-
Tissue optics-
Laser-tissue interaction and tissue engineering-
Biomedical spectroscopy-
Advanced microscopy and imaging-
Nanobiophotonics and optical molecular imaging-
Multimodal and hybrid biomedical imaging-
Micro/nanofabrication-
Medical microsystems-
Optical coherence tomography-
Photodynamic therapy.
JIOHS provides a vehicle to help professionals, graduates, engineers, academics and researchers working in the field of intelligent photonics in biology and medicine to disseminate information on the state-of-the-art technique.