{"title":"Imaging the Gastrointestinal Tract of Small Animals.","authors":"Linda A Jelicks","doi":"10.4303/jnp/N100504","DOIUrl":null,"url":null,"abstract":"<p><p>Animal models of human diseases are increasingly available and are invaluable for studies of organ pathophysiology. Megacolon, abnormal dilatation of the colon not caused by mechanical obstruction, involves the destruction of the autonomic nervous system innervating the colon. Animal models of megacolon include mouse models of Chagas disease and Hirschprung's disease. Small animal imaging has become an important research tool and recent advances in preclinical imaging modalities have enhanced the information content available from longitudinal studies of animal models of human diseases. While numerous applications of imaging technologies have been reported to study the brain and heart of mouse models, fewer studies of the gastrointestinal system have been undertaken due to technical limitations caused by peristaltic and respiratory motion. Various imaging modalities relevant to study of the gastrointestinal tract of intact live animals are reviewed herein.</p>","PeriodicalId":73863,"journal":{"name":"Journal of neuroparasitology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129853/pdf/nihms253992.pdf","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroparasitology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4303/jnp/N100504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Animal models of human diseases are increasingly available and are invaluable for studies of organ pathophysiology. Megacolon, abnormal dilatation of the colon not caused by mechanical obstruction, involves the destruction of the autonomic nervous system innervating the colon. Animal models of megacolon include mouse models of Chagas disease and Hirschprung's disease. Small animal imaging has become an important research tool and recent advances in preclinical imaging modalities have enhanced the information content available from longitudinal studies of animal models of human diseases. While numerous applications of imaging technologies have been reported to study the brain and heart of mouse models, fewer studies of the gastrointestinal system have been undertaken due to technical limitations caused by peristaltic and respiratory motion. Various imaging modalities relevant to study of the gastrointestinal tract of intact live animals are reviewed herein.