P-SPLINES USING DERIVATIVE INFORMATION.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christopher P Calderon, Josue G Martinez, Raymond J Carroll, Danny C Sorensen
{"title":"P-SPLINES USING DERIVATIVE INFORMATION.","authors":"Christopher P Calderon, Josue G Martinez, Raymond J Carroll, Danny C Sorensen","doi":"10.1137/090768102","DOIUrl":null,"url":null,"abstract":"<p><p>Time series associated with single-molecule experiments and/or simulations contain a wealth of multiscale information about complex biomolecular systems. We demonstrate how a collection of Penalized-splines (P-splines) can be useful in quantitatively summarizing such data. In this work, functions estimated using P-splines are associated with stochastic differential equations (SDEs). It is shown how quantities estimated in a single SDE summarize fast-scale phenomena, whereas variation between curves associated with different SDEs partially reflects noise induced by motion evolving on a slower time scale. P-splines assist in \"semiparametrically\" estimating nonlinear SDEs in situations where a time-dependent external force is applied to a single-molecule system. The P-splines introduced simultaneously use function and derivative scatterplot information to refine curve estimates. We refer to the approach as the PuDI (P-splines using Derivative Information) method. It is shown how generalized least squares ideas fit seamlessly into the PuDI method. Applications demonstrating how utilizing uncertainty information/approximations along with generalized least squares techniques improve PuDI fits are presented. Although the primary application here is in estimating nonlinear SDEs, the PuDI method is applicable to situations where both unbiased function and derivative estimates are available.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117255/pdf/nihms272821.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/090768102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Time series associated with single-molecule experiments and/or simulations contain a wealth of multiscale information about complex biomolecular systems. We demonstrate how a collection of Penalized-splines (P-splines) can be useful in quantitatively summarizing such data. In this work, functions estimated using P-splines are associated with stochastic differential equations (SDEs). It is shown how quantities estimated in a single SDE summarize fast-scale phenomena, whereas variation between curves associated with different SDEs partially reflects noise induced by motion evolving on a slower time scale. P-splines assist in "semiparametrically" estimating nonlinear SDEs in situations where a time-dependent external force is applied to a single-molecule system. The P-splines introduced simultaneously use function and derivative scatterplot information to refine curve estimates. We refer to the approach as the PuDI (P-splines using Derivative Information) method. It is shown how generalized least squares ideas fit seamlessly into the PuDI method. Applications demonstrating how utilizing uncertainty information/approximations along with generalized least squares techniques improve PuDI fits are presented. Although the primary application here is in estimating nonlinear SDEs, the PuDI method is applicable to situations where both unbiased function and derivative estimates are available.

Abstract Image

Abstract Image

Abstract Image

使用导数信息的 p 样条曲线
与单分子实验和/或模拟相关的时间序列包含大量有关复杂生物分子系统的多尺度信息。我们展示了 Penalized-splines(P-样条曲线)集合如何有助于定量总结此类数据。在这项工作中,使用 P-样条曲线估算的函数与随机微分方程 (SDE) 相关联。结果表明,在单个 SDE 中估算的数量如何概括快速尺度的现象,而与不同 SDE 相关的曲线之间的变化则部分反映了在较慢时间尺度上演化的运动所引起的噪声。在对单分子系统施加随时间变化的外力的情况下,P-样条曲线有助于 "半参数 "估计非线性 SDE。引入的 P 样条同时使用函数和导数散点图信息来完善曲线估计。我们将这种方法称为 PuDI(P-splines using Derivative Information)方法。我们还展示了广义最小二乘法如何与 PuDI 方法完美结合。我们还介绍了一些应用,展示了如何利用不确定性信息/近似值以及广义最小二乘法技术来改进 PuDI 拟合。虽然这里的主要应用是估计非线性 SDE,但 PuDI 方法也适用于无偏函数和导数估计都可用的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信