{"title":"Efficient Classification-Based Relabeling in Mixture Models.","authors":"Andrew J Cron, Mike West","doi":"10.1198/tast.2011.10170","DOIUrl":null,"url":null,"abstract":"<p><p>Effective component relabeling in Bayesian analyses of mixture models is critical to the routine use of mixtures in classification with analysis based on Markov chain Monte Carlo methods. The classification-based relabeling approach here is computationally attractive and statistically effective, and scales well with sample size and number of mixture components concordant with enabling routine analyses of increasingly large data sets. Building on the best of existing methods, practical relabeling aims to match data:component classification indicators in MCMC iterates with those of a defined reference mixture distribution. The method performs as well as or better than existing methods in small dimensional problems, while being practically superior in problems with larger data sets as the approach is scalable. We describe examples and computational benchmarks, and provide supporting code with efficient computational implementation of the algorithm that will be of use to others in practical applications of mixture models.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"65 1","pages":"16-20"},"PeriodicalIF":1.8000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1198/tast.2011.10170","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Statistician","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1198/tast.2011.10170","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 53
Abstract
Effective component relabeling in Bayesian analyses of mixture models is critical to the routine use of mixtures in classification with analysis based on Markov chain Monte Carlo methods. The classification-based relabeling approach here is computationally attractive and statistically effective, and scales well with sample size and number of mixture components concordant with enabling routine analyses of increasingly large data sets. Building on the best of existing methods, practical relabeling aims to match data:component classification indicators in MCMC iterates with those of a defined reference mixture distribution. The method performs as well as or better than existing methods in small dimensional problems, while being practically superior in problems with larger data sets as the approach is scalable. We describe examples and computational benchmarks, and provide supporting code with efficient computational implementation of the algorithm that will be of use to others in practical applications of mixture models.
期刊介绍:
Are you looking for general-interest articles about current national and international statistical problems and programs; interesting and fun articles of a general nature about statistics and its applications; or the teaching of statistics? Then you are looking for The American Statistician (TAS), published quarterly by the American Statistical Association. TAS contains timely articles organized into the following sections: Statistical Practice, General, Teacher''s Corner, History Corner, Interdisciplinary, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters to the Editor.