{"title":"Modeling the QSAR of ACE-Inhibitory Peptides with ANN and Its Applied Illustration.","authors":"Ronghai He, Haile Ma, Weirui Zhao, Wenjuan Qu, Jiewen Zhao, Lin Luo, Wenxue Zhu","doi":"10.1155/2012/620609","DOIUrl":null,"url":null,"abstract":"<p><p>A quantitative structure-activity relationship (QSAR) model of angiotensin-converting enzyme- (ACE-) inhibitory peptides was built with an artificial neural network (ANN) approach based on structural or activity data of 58 dipeptides (including peptide activity, hydrophilic amino acids content, three-dimensional shape, size, and electrical parameters), the overall correlation coefficient of the predicted versus actual data points is R = 0.928, and the model was applied in ACE-inhibitory peptides preparation from defatted wheat germ protein (DWGP). According to the QSAR model, the C-terminal of the peptide was found to have principal importance on ACE-inhibitory activity, that is, if the C-terminal is hydrophobic amino acid, the peptide's ACE-inhibitory activity will be high, and proteins which contain abundant hydrophobic amino acids are suitable to produce ACE-inhibitory peptides. According to the model, DWGP is a good protein material to produce ACE-inhibitory peptides because it contains 42.84% of hydrophobic amino acids, and structural information analysis from the QSAR model showed that proteases of Alcalase and Neutrase were suitable candidates for ACE-inhibitory peptides preparation from DWGP. Considering higher DH and similar ACE-inhibitory activity of hydrolysate compared with Neutrase, Alcalase was finally selected through experimental study.</p>","PeriodicalId":14239,"journal":{"name":"International Journal of Peptides","volume":"2012 ","pages":"620609"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/620609","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Peptides","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/620609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/6/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
A quantitative structure-activity relationship (QSAR) model of angiotensin-converting enzyme- (ACE-) inhibitory peptides was built with an artificial neural network (ANN) approach based on structural or activity data of 58 dipeptides (including peptide activity, hydrophilic amino acids content, three-dimensional shape, size, and electrical parameters), the overall correlation coefficient of the predicted versus actual data points is R = 0.928, and the model was applied in ACE-inhibitory peptides preparation from defatted wheat germ protein (DWGP). According to the QSAR model, the C-terminal of the peptide was found to have principal importance on ACE-inhibitory activity, that is, if the C-terminal is hydrophobic amino acid, the peptide's ACE-inhibitory activity will be high, and proteins which contain abundant hydrophobic amino acids are suitable to produce ACE-inhibitory peptides. According to the model, DWGP is a good protein material to produce ACE-inhibitory peptides because it contains 42.84% of hydrophobic amino acids, and structural information analysis from the QSAR model showed that proteases of Alcalase and Neutrase were suitable candidates for ACE-inhibitory peptides preparation from DWGP. Considering higher DH and similar ACE-inhibitory activity of hydrolysate compared with Neutrase, Alcalase was finally selected through experimental study.