Waka Mitsui, Kazushi Tamura, Takeomi Mizutani, Hisashi Haga, Kazushige Kawabata
{"title":"Mechanical response of single myoblasts to various stretching patterns visualized by scanning probe microscopy.","authors":"Waka Mitsui, Kazushi Tamura, Takeomi Mizutani, Hisashi Haga, Kazushige Kawabata","doi":"10.1679/aohc.72.227","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical memory effect of single cells was reported in our recent study. In order to clarify this effect, various sequential stimuli of uniaxial deformation were applied to cells by deformable culture dishes and a deformation device, and the local stiffness distribution of single C2C12 myoblasts was visualized by scanning probe microscopy. Following a single step stretching, cellular stiffness first increased steeply and then gradually decreased for two hours. By a single step stretching 30 min after a long pulse-like deformation with a pulse duration of 30 min, the cells responded in the same way. On the other hand, they did not respond to a single step stretching 30 min after a short pulse-like deformation with a pulse duration of 0.5 min. These results indicated that cellular mechanical response to external deformation is affected strongly by a preceding deformation and that the duration time of the preceding deformation is an important factor in the change in mechanical response. We consider that the change in mechanical response contributes to a regulatory mechanism of cellular contractile force.</p>","PeriodicalId":8307,"journal":{"name":"Archives of histology and cytology","volume":"72 4-5","pages":"227-34"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1679/aohc.72.227","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of histology and cytology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1679/aohc.72.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
The mechanical memory effect of single cells was reported in our recent study. In order to clarify this effect, various sequential stimuli of uniaxial deformation were applied to cells by deformable culture dishes and a deformation device, and the local stiffness distribution of single C2C12 myoblasts was visualized by scanning probe microscopy. Following a single step stretching, cellular stiffness first increased steeply and then gradually decreased for two hours. By a single step stretching 30 min after a long pulse-like deformation with a pulse duration of 30 min, the cells responded in the same way. On the other hand, they did not respond to a single step stretching 30 min after a short pulse-like deformation with a pulse duration of 0.5 min. These results indicated that cellular mechanical response to external deformation is affected strongly by a preceding deformation and that the duration time of the preceding deformation is an important factor in the change in mechanical response. We consider that the change in mechanical response contributes to a regulatory mechanism of cellular contractile force.
期刊介绍:
The Archives of Histology and Cytology provides prompt publication in English of original works on the histology and histochemistry of man and animals. The articles published are in principle restricted to studies on vertebrates, but investigations using invertebrates may be accepted when the intention and results present issues of common interest to vertebrate researchers. Pathological studies may also be accepted, if the observations and interpretations are deemed to contribute toward increasing knowledge of the normal features of the cells or tissues concerned. This journal will also publish reviews offering evaluations and critical interpretations of recent studies and theories.