Hongli Zhu, Xiaodong Dang, Kunping Yan, Penggao Dai, Chao Luo, Jun Ma, Yan Li, Thomas Ming Swi Chang, Chao Chen
{"title":"Pharmacodynamic study of polymerized porcine hemoglobin (pPolyHb) in a rat model of exchange transfusion.","authors":"Hongli Zhu, Xiaodong Dang, Kunping Yan, Penggao Dai, Chao Luo, Jun Ma, Yan Li, Thomas Ming Swi Chang, Chao Chen","doi":"10.3109/10731199.2011.559584","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the present study is to evaluate the pharmacodynamic properties of polymerized porcine hemoglobin (pPolyHb) in an exchange transfusion model. Each of two groups of rats received a volume of pPolyHb or hetastarch that equalled 120-140% of estimated total blood volume (70 ml/kg) exchange transfusion. The results showed pPolyHb retained hemodynamic stability and exhibited superior volume expansion capability. Furthermore, pPolyHb effectively reverse anaerobic metabolism caused by a large amount of volume exchange. In comparison with hetastarch, pPolyHb increased blood oxygen content and tissue oxygenation. All these properties contribute to a higher effectiveness in sustaining the lives of rats in pPolyHb group.</p>","PeriodicalId":8413,"journal":{"name":"Artificial cells, blood substitutes, and immobilization biotechnology","volume":"39 3","pages":"119-26"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10731199.2011.559584","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial cells, blood substitutes, and immobilization biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10731199.2011.559584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/3/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The objective of the present study is to evaluate the pharmacodynamic properties of polymerized porcine hemoglobin (pPolyHb) in an exchange transfusion model. Each of two groups of rats received a volume of pPolyHb or hetastarch that equalled 120-140% of estimated total blood volume (70 ml/kg) exchange transfusion. The results showed pPolyHb retained hemodynamic stability and exhibited superior volume expansion capability. Furthermore, pPolyHb effectively reverse anaerobic metabolism caused by a large amount of volume exchange. In comparison with hetastarch, pPolyHb increased blood oxygen content and tissue oxygenation. All these properties contribute to a higher effectiveness in sustaining the lives of rats in pPolyHb group.