Modeling the biomechanics of laser corneal refractive surgery

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Andrea Montanino , Sanne van Overbeeke , Anna Pandolfi
{"title":"Modeling the biomechanics of laser corneal refractive surgery","authors":"Andrea Montanino ,&nbsp;Sanne van Overbeeke ,&nbsp;Anna Pandolfi","doi":"10.1016/j.jmbbm.2023.105998","DOIUrl":null,"url":null,"abstract":"<div><p>We present a finite element<span> model of the human cornea used to simulate corneal refractive surgery according to the three most diffused laser procedures, i. e., photo-refractive keratectomy (PRK), laser in-situ keratomileusis (LASIK) and small incision lenticule extraction (SMILE). The geometry used for the model is patient-specific in terms of anterior and posterior surfaces of the cornea and intrastromal surfaces originated by the planned intervention. The customization<span> of the solid model prior to finite element discretization avoids the struggling difficulties associated with the geometrical modification induced by cutting, incision and thinning. Important features of the model include the identification of the stress-free geometry and an adaptive compliant limbus to account for the surrounding tissues. By the way of simplification, we adopt a Hooke material model extended to the finite kinematics, and consider only the preoperative and short-term postoperative conditions, disregarding the remodeling and material evolution aspects typical of biological tissues. Albeit simple and incomplete, the approach demonstrates that the post-operative biomechanical state of the cornea, after the creation of a flap or the removal of a small lenticule, is strongly modified with respect to the preoperative state and characterized by displacement irregularities and stress localizations.</span></span></p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"145 ","pages":"Article 105998"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612300351X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a finite element model of the human cornea used to simulate corneal refractive surgery according to the three most diffused laser procedures, i. e., photo-refractive keratectomy (PRK), laser in-situ keratomileusis (LASIK) and small incision lenticule extraction (SMILE). The geometry used for the model is patient-specific in terms of anterior and posterior surfaces of the cornea and intrastromal surfaces originated by the planned intervention. The customization of the solid model prior to finite element discretization avoids the struggling difficulties associated with the geometrical modification induced by cutting, incision and thinning. Important features of the model include the identification of the stress-free geometry and an adaptive compliant limbus to account for the surrounding tissues. By the way of simplification, we adopt a Hooke material model extended to the finite kinematics, and consider only the preoperative and short-term postoperative conditions, disregarding the remodeling and material evolution aspects typical of biological tissues. Albeit simple and incomplete, the approach demonstrates that the post-operative biomechanical state of the cornea, after the creation of a flap or the removal of a small lenticule, is strongly modified with respect to the preoperative state and characterized by displacement irregularities and stress localizations.

激光角膜屈光手术的生物力学建模
根据三种最常见的激光手术,即光屈光性角膜切除术(PRK)、激光原位角膜磨圆术(LASIK)和小切口晶状体摘除术(SMILE),建立了模拟角膜屈光手术的人类角膜有限元模型。模型中使用的几何形状是针对患者的,包括角膜的前后表面和由计划干预产生的角膜内表面。在有限元离散化之前对实体模型进行定制,避免了由切割、切口和细化引起的几何修改所带来的困难。该模型的重要特征包括识别无应力几何形状和自适应柔性边缘,以考虑周围组织。通过简化的方式,我们采用扩展到有限运动学的Hooke材料模型,并且只考虑术前和术后短期情况,而忽略了生物组织典型的重塑和材料演变方面。尽管简单且不完整,但该方法表明,在创建皮瓣或去除小晶状体后,角膜的术后生物力学状态与术前状态相比发生了强烈的改变,其特征是移位不规则和应力定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信