Poly(ε-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers as composite substrates for tissue engineering.

Teresa Russo, Antonio Gloria, Vincenzo D-Antò, Ugo D'Amora, Gianluca Ametrano, Flavia Bollino, Roberto De Santis, Giovanni Ausanio, Michelina Catauro, Sandro Rengo, Luigi Ambrosio
{"title":"Poly(ε-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers as composite substrates for tissue engineering.","authors":"Teresa Russo,&nbsp;Antonio Gloria,&nbsp;Vincenzo D-Antò,&nbsp;Ugo D'Amora,&nbsp;Gianluca Ametrano,&nbsp;Flavia Bollino,&nbsp;Roberto De Santis,&nbsp;Giovanni Ausanio,&nbsp;Michelina Catauro,&nbsp;Sandro Rengo,&nbsp;Luigi Ambrosio","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The importance of polymer-based composite materials to make multifunctional substrates for tissue engineering and the strategies to improve their performances have been stressed in the literature. Bioactive features of sol-gel synthesized poly(ε-caprolactone)/TiO₂ or poly(ε-caprolactone)/ZrO₂ organic-inorganic hybrid materials are widely documented. Accordingly, the aim of this preliminary research was to develop advanced composite substrates consisting of a poly(ε-caprolactone) matrix reinforced with sol-gel synthesized PCL/TiO₂ or PCL/ZrO₂ hybrid fillers.</p><p><strong>Methods: </strong>Micro-computed tomography and atomic force microscopy analyses allowed to study surface topography and roughness. On the other hand, mechanical and biological performances were evaluated by small punch tests and Alamar Blue™ assay, respectively.</p><p><strong>Results: </strong>Micro-computed tomography and atomic force microscopy analyses highlighted the effect of the preparation technique. Results from small punch tests and Alamar Blue™ assay evidenced that PCL reinforced with Ti2 (PCL=12, TiO₂=88 wt%) and Zr2 (PCL=12, ZrO₂=88 wt%) hybrid fillers provided better mechanical and biological performances.</p><p><strong>Conclusions: </strong>PCL reinforced with Ti2 (PCL=12, TiO₂=88 wt%) and Zr2 (PCL=12, ZrO₂=88 wt%) hybrid fillers could be considered as advanced composite substrates for hard tissue engineering.</p>","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":"8 3","pages":"146-52"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The importance of polymer-based composite materials to make multifunctional substrates for tissue engineering and the strategies to improve their performances have been stressed in the literature. Bioactive features of sol-gel synthesized poly(ε-caprolactone)/TiO₂ or poly(ε-caprolactone)/ZrO₂ organic-inorganic hybrid materials are widely documented. Accordingly, the aim of this preliminary research was to develop advanced composite substrates consisting of a poly(ε-caprolactone) matrix reinforced with sol-gel synthesized PCL/TiO₂ or PCL/ZrO₂ hybrid fillers.

Methods: Micro-computed tomography and atomic force microscopy analyses allowed to study surface topography and roughness. On the other hand, mechanical and biological performances were evaluated by small punch tests and Alamar Blue™ assay, respectively.

Results: Micro-computed tomography and atomic force microscopy analyses highlighted the effect of the preparation technique. Results from small punch tests and Alamar Blue™ assay evidenced that PCL reinforced with Ti2 (PCL=12, TiO₂=88 wt%) and Zr2 (PCL=12, ZrO₂=88 wt%) hybrid fillers provided better mechanical and biological performances.

Conclusions: PCL reinforced with Ti2 (PCL=12, TiO₂=88 wt%) and Zr2 (PCL=12, ZrO₂=88 wt%) hybrid fillers could be considered as advanced composite substrates for hard tissue engineering.

溶胶-凝胶合成有机-无机杂化填料增强聚(ε-己内酯)作为组织工程复合基质。
目的:综述了聚合物基复合材料在组织工程中作为多功能基质的重要性和提高其性能的策略。溶胶-凝胶合成的聚(ε-己内酯)/TiO 2或聚(ε-己内酯)/ZrO 2有机-无机杂化材料的生物活性特性得到了广泛的研究。因此,本初步研究的目的是开发由溶胶-凝胶合成的PCL/TiO 2或PCL/ZrO 2杂化填料增强的聚(ε-己内酯)基质组成的先进复合衬底。方法:显微计算机断层扫描和原子力显微镜分析允许研究表面形貌和粗糙度。另一方面,分别通过小冲孔试验和Alamar Blue™试验评估其机械性能和生物学性能。结果:显微计算机断层扫描和原子力显微镜分析突出了制备工艺的效果。小冲孔试验和Alamar Blue™试验的结果表明,Ti2 (PCL=12, TiO 2 =88 wt%)和Zr2 (PCL=12, ZrO 2 =88 wt%)混合填料增强的PCL具有更好的机械和生物性能。结论:Ti2 (PCL=12, TiO₂=88 wt%)和Zr2 (PCL=12, ZrO₂=88 wt%)复合填料增强PCL是一种用于硬组织工程的高级复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomaterials & Biomechanics
Journal of Applied Biomaterials & Biomechanics 生物-材料科学:生物材料
自引率
0.00%
发文量
0
审稿时长
12 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信