Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9).

Petra Ehling, Stefan Bittner, Nicole Bobak, Tobias Schwarz, Heinz Wiendl, Thomas Budde, Christoph Kleinschnitz, Sven G Meuth
{"title":"Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9).","authors":"Petra Ehling,&nbsp;Stefan Bittner,&nbsp;Nicole Bobak,&nbsp;Tobias Schwarz,&nbsp;Heinz Wiendl,&nbsp;Thomas Budde,&nbsp;Christoph Kleinschnitz,&nbsp;Sven G Meuth","doi":"10.1186/2040-7378-2-14","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1.</p><p><strong>Methods: </strong>We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation.</p><p><strong>Results: </strong>Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 +/- 9.80% and 69.92 +/- 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 +/- 17.31 mm3 and 47.10 +/- 19.26 mm3, respectively).</p><p><strong>Conclusions: </strong>Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia.</p>","PeriodicalId":12158,"journal":{"name":"Experimental & Translational Stroke Medicine","volume":"2 1","pages":"14"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2040-7378-2-14","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental & Translational Stroke Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2040-7378-2-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Background: Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1.

Methods: We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation.

Results: Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 +/- 9.80% and 69.92 +/- 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 +/- 17.31 mm3 and 47.10 +/- 19.26 mm3, respectively).

Conclusions: Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia.

Abstract Image

Abstract Image

Abstract Image

脑缺血中的两个孔域钾通道:K2P9.1 (TASK3, KCNK9)
背景:近年来,双孔结构域钾通道家族(K2P通道)的成员可能参与脑缺血后神经元损伤的机制。实验诱导的缺血性脑卒中后,K2P3.1-/-动物表现出更大的梗死面积和更差的功能结局。在这里,我们质疑密切相关的K2P通道K2P9.1的作用。方法:将野生型和K2P9.1-/-小鼠脑切片的电生理记录与脑缺血(短暂性大脑中动脉闭塞(tMCAO))体内模型相结合,描述K2P9.1在脑卒中形成中的功能影响。结果:膜片钳记录显示,在作为中枢神经传递神经元模型的膝状背外侧核(dLGN)的切片制备中可以获得K2P9.1介导的电流。电流特性表明K2P9.1,因为它们在去除细胞外二价阳离子时显示出增加,向外整流和接近钾平衡电位的逆转电位。将细胞外pH值从7.35降低到6.0,野生型和K2P9.1-/-小鼠的神经元电流减少幅度相当(分别为68.31 +/- 9.80%和69.92 +/- 11.65%)。这些结果可以在脑缺血的体内模型中翻译,在tMCAO诱导60分钟后24小时,K2P9.1-/-动物的梗死体积和功能结果显示,与野生型小鼠相比,梗死体积变小的趋势不显著(分别为60.50 +/- 17.31 mm3和47.10 +/- 19.26 mm3)。结论:结合早期对K2P2.1-/-和K2P3.1-/-小鼠的研究结果,本研究对K2P9.1-/-小鼠的研究结果表明,在鼠类脑缺血模型中,K2P通道亚型对多种复杂的体内效应有不同的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信