Huiling Zhang, Wenchao Du, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey, Jason C. White, Arturo Keller, Hongyan Guo, Rong Ji*, Lijuan Zhao*
{"title":"Metabolomics Reveals How Cucumber (Cucumis sativus) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress","authors":"Huiling Zhang, Wenchao Du, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey, Jason C. White, Arturo Keller, Hongyan Guo, Rong Ji*, Lijuan Zhao*","doi":"10.1021/acs.est.8b02440","DOIUrl":null,"url":null,"abstract":"<p >Due to their well-known antifungal activity, the intentional use of silver nanoparticles (AgNPs) as sustainable nanofungicides is expected to increase in agriculture. However, the impacts of AgNPs on plants must be critically evaluated to guarantee their safe use in food production. In this study, 4-week-old cucumber (<i>Cucumis sativus</i>) plants received a foliar application of AgNPs (4 or 40 mg/plant) or Ag<sup>+</sup> (0.04 or 0.4 mg/plant) for 7 days. Gas chromatography–mass spectrometry (GC-MS)=based nontarget metabolomics enabled the identification and quantification of 268 metabolites in cucumber leaves. Multivariate analysis revealed that all the treatments significantly altered the metabolite profile. Exposure to AgNPs resulted in metabolic reprogramming, including activation of antioxidant defense systems (upregulation of phenolic compounds) and downregulation of photosynthesis (upregulation of phytol). Additionally, AgNPs enhanced respiration (upregulation of tricarboxylic acid cycle intermediates), inhibited photorespiration (downregulation of glycine/serine ratio), altered membrane properties (upregulation of pentadecanoic and arachidonic acids, downregulation of linoleic and linolenic acids), and reduced inorganic nitrogen fixation (downregulation of glutamine and asparagine). Although Ag ions induced some of the same metabolic changes, alterations in the levels of carbazole, lactulose, raffinose, citraconic acid, lactamide, acetanilide, and <i>p</i>-benzoquinone were AgNP-specific. The results of this study offer new insight into the molecular mechanisms by which cucumber responds to AgNP exposure and provide important information to support the sustainable use of AgNPs in agriculture.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"52 14","pages":"8016–8026"},"PeriodicalIF":11.3000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.est.8b02440","citationCount":"131","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.8b02440","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 131
Abstract
Due to their well-known antifungal activity, the intentional use of silver nanoparticles (AgNPs) as sustainable nanofungicides is expected to increase in agriculture. However, the impacts of AgNPs on plants must be critically evaluated to guarantee their safe use in food production. In this study, 4-week-old cucumber (Cucumis sativus) plants received a foliar application of AgNPs (4 or 40 mg/plant) or Ag+ (0.04 or 0.4 mg/plant) for 7 days. Gas chromatography–mass spectrometry (GC-MS)=based nontarget metabolomics enabled the identification and quantification of 268 metabolites in cucumber leaves. Multivariate analysis revealed that all the treatments significantly altered the metabolite profile. Exposure to AgNPs resulted in metabolic reprogramming, including activation of antioxidant defense systems (upregulation of phenolic compounds) and downregulation of photosynthesis (upregulation of phytol). Additionally, AgNPs enhanced respiration (upregulation of tricarboxylic acid cycle intermediates), inhibited photorespiration (downregulation of glycine/serine ratio), altered membrane properties (upregulation of pentadecanoic and arachidonic acids, downregulation of linoleic and linolenic acids), and reduced inorganic nitrogen fixation (downregulation of glutamine and asparagine). Although Ag ions induced some of the same metabolic changes, alterations in the levels of carbazole, lactulose, raffinose, citraconic acid, lactamide, acetanilide, and p-benzoquinone were AgNP-specific. The results of this study offer new insight into the molecular mechanisms by which cucumber responds to AgNP exposure and provide important information to support the sustainable use of AgNPs in agriculture.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.