{"title":"Morphological varieties of the Purkinje fiber network in mammalian hearts, as revealed by light and electron microscopy.","authors":"Noriaki Ono, Takeshi Yamaguchi, Hajime Ishikawa, Mitsue Arakawa, Naohiko Takahashi, Tetsunori Saikawa, Tatsuo Shimada","doi":"10.1679/aohc.72.139","DOIUrl":null,"url":null,"abstract":"<p><p>Purkinje fibers in mammalian hearts are known to comprise the following three groups depending on their structure: group I found commonly in ungulates, group II in humans, monkeys and dogs, and group III in rodents. The aim of the present study was to document precisely the cytoarchitecture of a network of Purkinje fibers in different species by light and electron microscopy. Light microscopy of silver impregnated tissues revealed the reticular fibers ensheathing individual Purkinje strands consisting of 2-8 cells in both the ungulates (i.e., sheep and goats) and cetaceans (whales and dolphins) while they encircled each Purkinje cell in the primates (humans and monkeys), carnivores (dogs and seals), and rodents (rats). Scanning electron microscopy of NaOH digested tissues showed the ungrates (group I) to have a Purkinje fiber network composed of Purkinje strands; the cells in the strands were oval and made side-to-side and/or end-to-end connections. The Purkinje fiber network in the primates and carnivores (group II) was delicate and complicated; the Purkinje cells were usually cylindrical and connected end-to-end, the exception being their polygonal or stellate shapes at the bifurcations. Purkinje cells in the rodents (group III) resembled ventricular cardiac myocytes in cytoarchitecture. Morphologically, whales and seals respectively belonged to Purkinje cells of group I and group II. These findings indicate that the structural variety of the Purkinje fiber network may reflect the conducting function and be related to the phylogeny of the mammalian species.</p>","PeriodicalId":8307,"journal":{"name":"Archives of histology and cytology","volume":"72 3","pages":"139-49"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1679/aohc.72.139","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of histology and cytology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1679/aohc.72.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 82
Abstract
Purkinje fibers in mammalian hearts are known to comprise the following three groups depending on their structure: group I found commonly in ungulates, group II in humans, monkeys and dogs, and group III in rodents. The aim of the present study was to document precisely the cytoarchitecture of a network of Purkinje fibers in different species by light and electron microscopy. Light microscopy of silver impregnated tissues revealed the reticular fibers ensheathing individual Purkinje strands consisting of 2-8 cells in both the ungulates (i.e., sheep and goats) and cetaceans (whales and dolphins) while they encircled each Purkinje cell in the primates (humans and monkeys), carnivores (dogs and seals), and rodents (rats). Scanning electron microscopy of NaOH digested tissues showed the ungrates (group I) to have a Purkinje fiber network composed of Purkinje strands; the cells in the strands were oval and made side-to-side and/or end-to-end connections. The Purkinje fiber network in the primates and carnivores (group II) was delicate and complicated; the Purkinje cells were usually cylindrical and connected end-to-end, the exception being their polygonal or stellate shapes at the bifurcations. Purkinje cells in the rodents (group III) resembled ventricular cardiac myocytes in cytoarchitecture. Morphologically, whales and seals respectively belonged to Purkinje cells of group I and group II. These findings indicate that the structural variety of the Purkinje fiber network may reflect the conducting function and be related to the phylogeny of the mammalian species.
期刊介绍:
The Archives of Histology and Cytology provides prompt publication in English of original works on the histology and histochemistry of man and animals. The articles published are in principle restricted to studies on vertebrates, but investigations using invertebrates may be accepted when the intention and results present issues of common interest to vertebrate researchers. Pathological studies may also be accepted, if the observations and interpretations are deemed to contribute toward increasing knowledge of the normal features of the cells or tissues concerned. This journal will also publish reviews offering evaluations and critical interpretations of recent studies and theories.