{"title":"Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice","authors":"Yongqing Jiao, Yonghong Wang, Dawei Xue, Jing Wang, Meixian Yan, Guifu Liu, Guojun Dong, Dali Zeng, Zefu Lu, Xudong Zhu, Qian Qian, Jiayang Li","doi":"10.1038/ng.591","DOIUrl":null,"url":null,"abstract":"Jiayang Li and colleagues report the positional cloning of the Ideal Plant Architecture (IPA1) QTL in rice. The gene OsSPL14 underlies the IPA1 locus and regulates plant architecture and enhances rice grain yield. Increasing crop yield is a major challenge for modern agriculture. The development of new plant types, which is known as ideal plant architecture (IPA), has been proposed as a means to enhance rice yield potential over that of existing high-yield varieties1,2. Here, we report the cloning and characterization of a semidominant quantitative trait locus, IPA1 (Ideal Plant Architecture 1), which profoundly changes rice plant architecture and substantially enhances rice grain yield. The IPA1 quantitative trait locus encodes OsSPL14 (SOUAMOSA PROMOTER BINDING PROTEIN-LIKE 14) and is regulated by microRNA (miRNA) OsmiR156 in vivo. We demonstrate that a point mutation in OsSPL14 perturbs OsmiR156-directed regulation of OsSPL14, generating an ''ideal'' rice plant with a reduced tiller number, increased lodging resistance and enhanced grain yield. Our study suggests that OsSPL14 may help improve rice grain yield by facilitating the breeding of new elite rice varieties.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"42 6","pages":"541-544"},"PeriodicalIF":31.7000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/ng.591","citationCount":"1109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/ng.591","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1109
Abstract
Jiayang Li and colleagues report the positional cloning of the Ideal Plant Architecture (IPA1) QTL in rice. The gene OsSPL14 underlies the IPA1 locus and regulates plant architecture and enhances rice grain yield. Increasing crop yield is a major challenge for modern agriculture. The development of new plant types, which is known as ideal plant architecture (IPA), has been proposed as a means to enhance rice yield potential over that of existing high-yield varieties1,2. Here, we report the cloning and characterization of a semidominant quantitative trait locus, IPA1 (Ideal Plant Architecture 1), which profoundly changes rice plant architecture and substantially enhances rice grain yield. The IPA1 quantitative trait locus encodes OsSPL14 (SOUAMOSA PROMOTER BINDING PROTEIN-LIKE 14) and is regulated by microRNA (miRNA) OsmiR156 in vivo. We demonstrate that a point mutation in OsSPL14 perturbs OsmiR156-directed regulation of OsSPL14, generating an ''ideal'' rice plant with a reduced tiller number, increased lodging resistance and enhanced grain yield. Our study suggests that OsSPL14 may help improve rice grain yield by facilitating the breeding of new elite rice varieties.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution