M F Izaguirre, D Larrea, J F Adur, J E Diaz-Zamboni, N B Vicente, C D Galetto, V H Casco
{"title":"Role of E-cadherin in epithelial architecture maintenance.","authors":"M F Izaguirre, D Larrea, J F Adur, J E Diaz-Zamboni, N B Vicente, C D Galetto, V H Casco","doi":"10.3109/15419061003686938","DOIUrl":null,"url":null,"abstract":"<p><p>Morphogenesis and architecture of a developing epithelium is controlled by both cell shape and contacts, mediated by spatially and temporally regulated cell adhesion molecules. The authors study if E-cadherin functions as a key factor of epithelial adhesion and epidermal architecture in vivo. They apply whole-mount digital deconvolution microscopy to evaluate three-dimensional (3D) E-cadherin expression during skin morphogenesis of Rhinella arenarum and in a cell adhesion alteration model. Results show morphogenetic changes in the 3D E-cadherin spatiotemporal expression pattern correlated with the increase of E-cadherin and in the number of cells with hexagonal geometry. Alterations in junction-protein phosphorylation showed drastic loss of E-cadherin and beta-catenin in cell-cell contacts and the increase of cytoplasm and nuclear beta-catenin in epidermis, suggesting the activation of the beta-catenin signal pathway. Surprisingly, no changes in cell shape and skin architecture were registered, suggesting that epidermal E-cadherin appears to be involved in signaling rather than cell contact maintenance in vivo.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"17 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061003686938","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061003686938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 19
Abstract
Morphogenesis and architecture of a developing epithelium is controlled by both cell shape and contacts, mediated by spatially and temporally regulated cell adhesion molecules. The authors study if E-cadherin functions as a key factor of epithelial adhesion and epidermal architecture in vivo. They apply whole-mount digital deconvolution microscopy to evaluate three-dimensional (3D) E-cadherin expression during skin morphogenesis of Rhinella arenarum and in a cell adhesion alteration model. Results show morphogenetic changes in the 3D E-cadherin spatiotemporal expression pattern correlated with the increase of E-cadherin and in the number of cells with hexagonal geometry. Alterations in junction-protein phosphorylation showed drastic loss of E-cadherin and beta-catenin in cell-cell contacts and the increase of cytoplasm and nuclear beta-catenin in epidermis, suggesting the activation of the beta-catenin signal pathway. Surprisingly, no changes in cell shape and skin architecture were registered, suggesting that epidermal E-cadherin appears to be involved in signaling rather than cell contact maintenance in vivo.
期刊介绍:
Cessation
Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems.
The journal welcomes submission of original research articles, reviews, short communications and conference reports.