Anna M Schneider, Amy S Duffield, David E Symer, Kathleen H Burns
{"title":"Roles of retrotransposons in benign and malignant hematologic disease.","authors":"Anna M Schneider, Amy S Duffield, David E Symer, Kathleen H Burns","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Nearly half of our genomes are repetitive sequences derived from retrotransposons. These repeats have accumulated by a 'copy-and-paste' mechanism whereby: (i.) a genomic template sequence is transcribed to RNA, (ii.) the RNA is reverse-transcribed, and (iii.) the DNA copy is inserted at a new location in the host genome. As we remain susceptible to new retrotransposition events, many of these insertions are highly polymorphic. Transposons are of interest since insertions into both coding and non-coding gene regions have been associated with a wide variety of functional sequelae and because transposable elements can be involved in genomic rearrangements in transformed cells. In this review, we highlight how expression of retrotransposons, de novo and polymorphic transposon insertions, and genomic rearrangements that these repeats potentiate contribute to both benign and neoplastic hematopoietic diseases.</p>","PeriodicalId":87394,"journal":{"name":"Cellscience","volume":"6 2","pages":"121-145"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830787/pdf/nihms-166744.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellscience","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nearly half of our genomes are repetitive sequences derived from retrotransposons. These repeats have accumulated by a 'copy-and-paste' mechanism whereby: (i.) a genomic template sequence is transcribed to RNA, (ii.) the RNA is reverse-transcribed, and (iii.) the DNA copy is inserted at a new location in the host genome. As we remain susceptible to new retrotransposition events, many of these insertions are highly polymorphic. Transposons are of interest since insertions into both coding and non-coding gene regions have been associated with a wide variety of functional sequelae and because transposable elements can be involved in genomic rearrangements in transformed cells. In this review, we highlight how expression of retrotransposons, de novo and polymorphic transposon insertions, and genomic rearrangements that these repeats potentiate contribute to both benign and neoplastic hematopoietic diseases.