Yiling Song , Xiaohua Zhang , Xiangzhi Cui , Jianlin Shi
{"title":"The ORR kinetics of ZIF-derived FeNC electrocatalysts","authors":"Yiling Song , Xiaohua Zhang , Xiangzhi Cui , Jianlin Shi","doi":"10.1016/j.jcat.2019.02.023","DOIUrl":null,"url":null,"abstract":"<div><p>Fe<img>N<img>C oxygen reduction reaction (ORR) catalysts, based on metal organic frameworks (MOFs) with highly-dispersed active sites embedded in porous carbon matrix, are presently regarded as the most promising noble metal-free ORR catalysts in acidic electrolyte. However, the detailed and specific ORR kinetics of the Fe<img>N<img>C catalysts in several successive steps of oxygen reduction, still remains unclear. In this study, a series of zeolitic imidazolate frameworks (ZIF)-derived and Fe-coordinated catalysts (Fe-ZIF-8) were prepared and investigated in much details of half-wave potentials, ring currents, H<sub>2</sub>O<sub>2</sub> yields and apparent coverage ratios on catalyst surfaces, hydrogen peroxide reduction reaction (HPRR) activities and diffusion-limited current plateaus, in comparison to benchmark Pt/C catalyst. Specially, through intentionally introducing varied concentrations of H<sub>2</sub>O<sub>2</sub> as the probe molecule into the acidic electrolyte during ORR tests, we verified an interesting phenomenon that relatively lower ORR catalytic activity of Fe-ZIF-8 is not associated with the over-production of intermediate H<sub>2</sub>O<sub>2</sub> as compared to Pt, and in fact, Fe-ZIF-8 produced significantly lower H<sub>2</sub>O<sub>2</sub> amount than that by Pt in the ORR. Based on the above studies and findings, this work attempts to clarify the possible underlying kinetics in ORR by using Fe-ZIF-8 as the ORR electro-catalysts. It is concluded that, the oxygen-involved kinetics, such as oxygen molecule adsorption, activation and reduction into H<sub>2</sub>O<sub>2</sub> in the first 2e step, rather than the proton-related reactions such as superoxide anion protonation in the first 2e step, nor the HPRR in the second 2e step, is kinetically sluggish on Fe-ZIF-8, in comparison with Pt/C.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"372 ","pages":"Pages 174-181"},"PeriodicalIF":6.5000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcat.2019.02.023","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951719300843","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 43
Abstract
FeNC oxygen reduction reaction (ORR) catalysts, based on metal organic frameworks (MOFs) with highly-dispersed active sites embedded in porous carbon matrix, are presently regarded as the most promising noble metal-free ORR catalysts in acidic electrolyte. However, the detailed and specific ORR kinetics of the FeNC catalysts in several successive steps of oxygen reduction, still remains unclear. In this study, a series of zeolitic imidazolate frameworks (ZIF)-derived and Fe-coordinated catalysts (Fe-ZIF-8) were prepared and investigated in much details of half-wave potentials, ring currents, H2O2 yields and apparent coverage ratios on catalyst surfaces, hydrogen peroxide reduction reaction (HPRR) activities and diffusion-limited current plateaus, in comparison to benchmark Pt/C catalyst. Specially, through intentionally introducing varied concentrations of H2O2 as the probe molecule into the acidic electrolyte during ORR tests, we verified an interesting phenomenon that relatively lower ORR catalytic activity of Fe-ZIF-8 is not associated with the over-production of intermediate H2O2 as compared to Pt, and in fact, Fe-ZIF-8 produced significantly lower H2O2 amount than that by Pt in the ORR. Based on the above studies and findings, this work attempts to clarify the possible underlying kinetics in ORR by using Fe-ZIF-8 as the ORR electro-catalysts. It is concluded that, the oxygen-involved kinetics, such as oxygen molecule adsorption, activation and reduction into H2O2 in the first 2e step, rather than the proton-related reactions such as superoxide anion protonation in the first 2e step, nor the HPRR in the second 2e step, is kinetically sluggish on Fe-ZIF-8, in comparison with Pt/C.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.