Margit Harst, Beatrix-Axinja Cobanov, Ludger Hausmann, Rudolf Eibach, Reinhard Töpfer
{"title":"Evaluation of pollen dispersal and cross pollination using transgenic grapevine plants.","authors":"Margit Harst, Beatrix-Axinja Cobanov, Ludger Hausmann, Rudolf Eibach, Reinhard Töpfer","doi":"10.1051/ebr/2009012","DOIUrl":null,"url":null,"abstract":"<p><p>Public debate about the possible risk of genetically modified plants often concerns putative effects of pollen dispersal and out-crossing into conventional fields in the neighborhood of transgenic plants. Though Vitis vinifera (grapevine) is generally considered to be self-pollinating, it cannot be excluded that vertical gene transfer might occur. For monitoring pollen flow and out-crossing events, transgenic plants of Vitis vinifera cv. 'Dornfelder' harboring the gus-int gene were planted in the center of a field experiment in Southwest Germany in 1999. The rate of pollen dispersal was determined by pollen traps placed at radial distances of 5-150 m from the pollen-donor plants, at 1.00 and 1.80 m above ground. Transgenic pollen was evaluated by GUS staining, and could clearly be distinguished from pollen originating from non-transgenic grapevine plants. Transgenic pollen was observed up to 150 m from the pollen donors. The rate of out-crossing was determined by sampling seeds of selected grapevines at a distance of 10 m to the pollen source, and of a sector at 20 m distance, respectively, followed by GUS analysis of seedlings. The average cross-pollination rate during the experiment (2002-2004) was 2.7% at a distance of 20 m. The results of this first pilot study present a good base for further assessment under the conditions of normal viticulture practice.</p>","PeriodicalId":87177,"journal":{"name":"Environmental biosafety research","volume":"8 2","pages":"87-99"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental biosafety research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ebr/2009012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2009/10/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Public debate about the possible risk of genetically modified plants often concerns putative effects of pollen dispersal and out-crossing into conventional fields in the neighborhood of transgenic plants. Though Vitis vinifera (grapevine) is generally considered to be self-pollinating, it cannot be excluded that vertical gene transfer might occur. For monitoring pollen flow and out-crossing events, transgenic plants of Vitis vinifera cv. 'Dornfelder' harboring the gus-int gene were planted in the center of a field experiment in Southwest Germany in 1999. The rate of pollen dispersal was determined by pollen traps placed at radial distances of 5-150 m from the pollen-donor plants, at 1.00 and 1.80 m above ground. Transgenic pollen was evaluated by GUS staining, and could clearly be distinguished from pollen originating from non-transgenic grapevine plants. Transgenic pollen was observed up to 150 m from the pollen donors. The rate of out-crossing was determined by sampling seeds of selected grapevines at a distance of 10 m to the pollen source, and of a sector at 20 m distance, respectively, followed by GUS analysis of seedlings. The average cross-pollination rate during the experiment (2002-2004) was 2.7% at a distance of 20 m. The results of this first pilot study present a good base for further assessment under the conditions of normal viticulture practice.