Donald T. Wicklow , Annalisa M. Jordan , James B. Gloer
{"title":"Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize","authors":"Donald T. Wicklow , Annalisa M. Jordan , James B. Gloer","doi":"10.1016/j.mycres.2009.10.001","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Colletotrichum</em><em> graminicola</em></span> is a systemic vascular pathogen that causes anthracnose stalk rot and leaf blight of maize. In the course of an effort to explore the potential presence and roles of <em>C. graminicola</em><span> metabolites in maize, ethyl acetate extracts of solid substrate fermentations of several </span><em>C. graminicola</em> isolates from Michigan and Illinois were found to be active against <em>Aspergillus flavus</em> and <span><em>Fusarium</em><em> verticillioides</em></span><span>, both mycotoxin-producing seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I–III as major components. Monorden and monocillin I displayed </span><em>in vitro</em> activity against the stalk- and ear-rot pathogen <em>Stenocarpella maydis</em> while only the most abundant metabolite (monorden) showed activity against foliar pathogens <span><em>Alternaria alternata</em></span>, <em>Bipolaris zeicola</em>, and <span><em>Curvularia lunata</em></span>. Using LC–HRESITOFMS, monorden was detected in steam-sterilized maize stalks and stalk residues inoculated with <em>C. graminicola</em><span> but not in the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber. Monorden and monocillin I can bind and inhibit plant Hsp90, a chaperone of R-proteins. It is hypothesized that monorden and monocillins could support the </span><em>C. graminicola</em> disease cycle by disrupting maize plant defenses and by excluding other fungi from necrotic tissues and crop residues. This is the first report of natural products from <em>C. graminicola</em>, as well as the production of monorden and monocillins by a pathogen of cereals.</p></div>","PeriodicalId":19045,"journal":{"name":"Mycological research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mycres.2009.10.001","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycological research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0953756209002044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Colletotrichum graminicola is a systemic vascular pathogen that causes anthracnose stalk rot and leaf blight of maize. In the course of an effort to explore the potential presence and roles of C. graminicola metabolites in maize, ethyl acetate extracts of solid substrate fermentations of several C. graminicola isolates from Michigan and Illinois were found to be active against Aspergillus flavus and Fusarium verticillioides, both mycotoxin-producing seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I–III as major components. Monorden and monocillin I displayed in vitro activity against the stalk- and ear-rot pathogen Stenocarpella maydis while only the most abundant metabolite (monorden) showed activity against foliar pathogens Alternaria alternata, Bipolaris zeicola, and Curvularia lunata. Using LC–HRESITOFMS, monorden was detected in steam-sterilized maize stalks and stalk residues inoculated with C. graminicola but not in the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber. Monorden and monocillin I can bind and inhibit plant Hsp90, a chaperone of R-proteins. It is hypothesized that monorden and monocillins could support the C. graminicola disease cycle by disrupting maize plant defenses and by excluding other fungi from necrotic tissues and crop residues. This is the first report of natural products from C. graminicola, as well as the production of monorden and monocillins by a pathogen of cereals.